mirror of
https://github.com/acidanthera/OpenCorePkg.git
synced 2025-12-08 19:25:01 +00:00
OcCompilerIntrinsicsLib: Initial version, thx @nms42
This commit is contained in:
parent
7b30612be8
commit
63102b2ecc
953
Library/OcCompilerIntrinsicsLib/MsvcMath32.c
Normal file
953
Library/OcCompilerIntrinsicsLib/MsvcMath32.c
Normal file
@ -0,0 +1,953 @@
|
||||
/** @file
|
||||
MSVC compiler intrinsics for IA32.
|
||||
|
||||
Copyright (c) 2020, nms42. All rights reserved.
|
||||
SPDX-License-Identifier: BSD-3-Clause
|
||||
**/
|
||||
|
||||
/* Came from https://gist.github.com/mmozeiko/6a365d6c483fc721b63a#file-win32_crt_math-cpp */
|
||||
|
||||
#ifdef _M_IX86 // use this file only for 32-bit architecture
|
||||
|
||||
#define CRT_LOWORD(x) dword ptr [x+0]
|
||||
#define CRT_HIWORD(x) dword ptr [x+4]
|
||||
|
||||
__declspec(naked) void _alldiv()
|
||||
{
|
||||
#define DVND esp + 16 // stack address of dividend (a)
|
||||
#define DVSR esp + 24 // stack address of divisor (b)
|
||||
|
||||
__asm
|
||||
{
|
||||
push edi
|
||||
push esi
|
||||
push ebx
|
||||
|
||||
; Determine sign of the result (edi = 0 if result is positive, non-zero
|
||||
; otherwise) and make operands positive.
|
||||
|
||||
xor edi,edi ; result sign assumed positive
|
||||
|
||||
mov eax,CRT_HIWORD(DVND) ; hi word of a
|
||||
or eax,eax ; test to see if signed
|
||||
jge short L1 ; skip rest if a is already positive
|
||||
inc edi ; complement result sign flag
|
||||
mov edx,CRT_LOWORD(DVND) ; lo word of a
|
||||
neg eax ; make a positive
|
||||
neg edx
|
||||
sbb eax,0
|
||||
mov CRT_HIWORD(DVND),eax ; save positive value
|
||||
mov CRT_LOWORD(DVND),edx
|
||||
L1:
|
||||
mov eax,CRT_HIWORD(DVSR) ; hi word of b
|
||||
or eax,eax ; test to see if signed
|
||||
jge short L2 ; skip rest if b is already positive
|
||||
inc edi ; complement the result sign flag
|
||||
mov edx,CRT_LOWORD(DVSR) ; lo word of a
|
||||
neg eax ; make b positive
|
||||
neg edx
|
||||
sbb eax,0
|
||||
mov CRT_HIWORD(DVSR),eax ; save positive value
|
||||
mov CRT_LOWORD(DVSR),edx
|
||||
L2:
|
||||
|
||||
;
|
||||
; Now do the divide. First look to see if the divisor is less than 4194304K.
|
||||
; If so, then we can use a simple algorithm with word divides, otherwise
|
||||
; things get a little more complex.
|
||||
;
|
||||
; NOTE - eax currently contains the high order word of DVSR
|
||||
;
|
||||
|
||||
or eax,eax ; check to see if divisor < 4194304K
|
||||
jnz short L3 ; nope, gotta do this the hard way
|
||||
mov ecx,CRT_LOWORD(DVSR) ; load divisor
|
||||
mov eax,CRT_HIWORD(DVND) ; load high word of dividend
|
||||
xor edx,edx
|
||||
div ecx ; eax <- high order bits of quotient
|
||||
mov ebx,eax ; save high bits of quotient
|
||||
mov eax,CRT_LOWORD(DVND) ; edx:eax <- remainder:lo word of dividend
|
||||
div ecx ; eax <- low order bits of quotient
|
||||
mov edx,ebx ; edx:eax <- quotient
|
||||
jmp short L4 ; set sign, restore stack and return
|
||||
|
||||
;
|
||||
; Here we do it the hard way. Remember, eax contains the high word of DVSR
|
||||
;
|
||||
|
||||
L3:
|
||||
mov ebx,eax ; ebx:ecx <- divisor
|
||||
mov ecx,CRT_LOWORD(DVSR)
|
||||
mov edx,CRT_HIWORD(DVND) ; edx:eax <- dividend
|
||||
mov eax,CRT_LOWORD(DVND)
|
||||
L5:
|
||||
shr ebx,1 ; shift divisor right one bit
|
||||
rcr ecx,1
|
||||
shr edx,1 ; shift dividend right one bit
|
||||
rcr eax,1
|
||||
or ebx,ebx
|
||||
jnz short L5 ; loop until divisor < 4194304K
|
||||
div ecx ; now divide, ignore remainder
|
||||
mov esi,eax ; save quotient
|
||||
|
||||
;
|
||||
; We may be off by one, so to check, we will multiply the quotient
|
||||
; by the divisor and check the result against the orignal dividend
|
||||
; Note that we must also check for overflow, which can occur if the
|
||||
; dividend is close to 2**64 and the quotient is off by 1.
|
||||
;
|
||||
|
||||
mul CRT_HIWORD(DVSR) ; QUOT * CRT_HIWORD(DVSR)
|
||||
mov ecx,eax
|
||||
mov eax,CRT_LOWORD(DVSR)
|
||||
mul esi ; QUOT * CRT_LOWORD(DVSR)
|
||||
add edx,ecx ; EDX:EAX = QUOT * DVSR
|
||||
jc short L6 ; carry means Quotient is off by 1
|
||||
|
||||
;
|
||||
; do long compare here between original dividend and the result of the
|
||||
; multiply in edx:eax. If original is larger or equal, we are ok, otherwise
|
||||
; subtract one (1) from the quotient.
|
||||
;
|
||||
|
||||
cmp edx,CRT_HIWORD(DVND) ; compare hi words of result and original
|
||||
ja short L6 ; if result > original, do subtract
|
||||
jb short L7 ; if result < original, we are ok
|
||||
cmp eax,CRT_LOWORD(DVND) ; hi words are equal, compare lo words
|
||||
jbe short L7 ; if less or equal we are ok, else subtract
|
||||
L6:
|
||||
dec esi ; subtract 1 from quotient
|
||||
L7:
|
||||
xor edx,edx ; edx:eax <- quotient
|
||||
mov eax,esi
|
||||
|
||||
;
|
||||
; Just the cleanup left to do. edx:eax contains the quotient. Set the sign
|
||||
; according to the save value, cleanup the stack, and return.
|
||||
;
|
||||
|
||||
L4:
|
||||
dec edi ; check to see if result is negative
|
||||
jnz short L8 ; if EDI == 0, result should be negative
|
||||
neg edx ; otherwise, negate the result
|
||||
neg eax
|
||||
sbb edx,0
|
||||
|
||||
;
|
||||
; Restore the saved registers and return.
|
||||
;
|
||||
|
||||
L8:
|
||||
pop ebx
|
||||
pop esi
|
||||
pop edi
|
||||
|
||||
ret 16
|
||||
}
|
||||
|
||||
#undef DVND
|
||||
#undef DVSR
|
||||
}
|
||||
|
||||
__declspec(naked) void _alldvrm()
|
||||
{
|
||||
#define DVND esp + 16 // stack address of dividend (a)
|
||||
#define DVSR esp + 24 // stack address of divisor (b)
|
||||
|
||||
__asm
|
||||
{
|
||||
push edi
|
||||
push esi
|
||||
push ebp
|
||||
|
||||
; Determine sign of the quotient (edi = 0 if result is positive, non-zero
|
||||
; otherwise) and make operands positive.
|
||||
; Sign of the remainder is kept in ebp.
|
||||
|
||||
xor edi,edi ; result sign assumed positive
|
||||
xor ebp,ebp ; result sign assumed positive
|
||||
|
||||
mov eax,CRT_HIWORD(DVND) ; hi word of a
|
||||
or eax,eax ; test to see if signed
|
||||
jge short L1 ; skip rest if a is already positive
|
||||
inc edi ; complement result sign flag
|
||||
inc ebp ; complement result sign flag
|
||||
mov edx,CRT_LOWORD(DVND) ; lo word of a
|
||||
neg eax ; make a positive
|
||||
neg edx
|
||||
sbb eax,0
|
||||
mov CRT_HIWORD(DVND),eax ; save positive value
|
||||
mov CRT_LOWORD(DVND),edx
|
||||
L1:
|
||||
mov eax,CRT_HIWORD(DVSR) ; hi word of b
|
||||
or eax,eax ; test to see if signed
|
||||
jge short L2 ; skip rest if b is already positive
|
||||
inc edi ; complement the result sign flag
|
||||
mov edx,CRT_LOWORD(DVSR) ; lo word of a
|
||||
neg eax ; make b positive
|
||||
neg edx
|
||||
sbb eax,0
|
||||
mov CRT_HIWORD(DVSR),eax ; save positive value
|
||||
mov CRT_LOWORD(DVSR),edx
|
||||
L2:
|
||||
|
||||
;
|
||||
; Now do the divide. First look to see if the divisor is less than 4194304K.
|
||||
; If so, then we can use a simple algorithm with word divides, otherwise
|
||||
; things get a little more complex.
|
||||
;
|
||||
; NOTE - eax currently contains the high order word of DVSR
|
||||
;
|
||||
|
||||
or eax,eax ; check to see if divisor < 4194304K
|
||||
jnz short L3 ; nope, gotta do this the hard way
|
||||
mov ecx,CRT_LOWORD(DVSR) ; load divisor
|
||||
mov eax,CRT_HIWORD(DVND) ; load high word of dividend
|
||||
xor edx,edx
|
||||
div ecx ; eax <- high order bits of quotient
|
||||
mov ebx,eax ; save high bits of quotient
|
||||
mov eax,CRT_LOWORD(DVND) ; edx:eax <- remainder:lo word of dividend
|
||||
div ecx ; eax <- low order bits of quotient
|
||||
mov esi,eax ; ebx:esi <- quotient
|
||||
;
|
||||
; Now we need to do a multiply so that we can compute the remainder.
|
||||
;
|
||||
mov eax,ebx ; set up high word of quotient
|
||||
mul CRT_LOWORD(DVSR) ; CRT_HIWORD(QUOT) * DVSR
|
||||
mov ecx,eax ; save the result in ecx
|
||||
mov eax,esi ; set up low word of quotient
|
||||
mul CRT_LOWORD(DVSR) ; CRT_LOWORD(QUOT) * DVSR
|
||||
add edx,ecx ; EDX:EAX = QUOT * DVSR
|
||||
jmp short L4 ; complete remainder calculation
|
||||
|
||||
;
|
||||
; Here we do it the hard way. Remember, eax contains the high word of DVSR
|
||||
;
|
||||
|
||||
L3:
|
||||
mov ebx,eax ; ebx:ecx <- divisor
|
||||
mov ecx,CRT_LOWORD(DVSR)
|
||||
mov edx,CRT_HIWORD(DVND) ; edx:eax <- dividend
|
||||
mov eax,CRT_LOWORD(DVND)
|
||||
L5:
|
||||
shr ebx,1 ; shift divisor right one bit
|
||||
rcr ecx,1
|
||||
shr edx,1 ; shift dividend right one bit
|
||||
rcr eax,1
|
||||
or ebx,ebx
|
||||
jnz short L5 ; loop until divisor < 4194304K
|
||||
div ecx ; now divide, ignore remainder
|
||||
mov esi,eax ; save quotient
|
||||
|
||||
;
|
||||
; We may be off by one, so to check, we will multiply the quotient
|
||||
; by the divisor and check the result against the orignal dividend
|
||||
; Note that we must also check for overflow, which can occur if the
|
||||
; dividend is close to 2**64 and the quotient is off by 1.
|
||||
;
|
||||
|
||||
mul CRT_HIWORD(DVSR) ; QUOT * CRT_HIWORD(DVSR)
|
||||
mov ecx,eax
|
||||
mov eax,CRT_LOWORD(DVSR)
|
||||
mul esi ; QUOT * CRT_LOWORD(DVSR)
|
||||
add edx,ecx ; EDX:EAX = QUOT * DVSR
|
||||
jc short L6 ; carry means Quotient is off by 1
|
||||
|
||||
;
|
||||
; do long compare here between original dividend and the result of the
|
||||
; multiply in edx:eax. If original is larger or equal, we are ok, otherwise
|
||||
; subtract one (1) from the quotient.
|
||||
;
|
||||
|
||||
cmp edx,CRT_HIWORD(DVND) ; compare hi words of result and original
|
||||
ja short L6 ; if result > original, do subtract
|
||||
jb short L7 ; if result < original, we are ok
|
||||
cmp eax,CRT_LOWORD(DVND) ; hi words are equal, compare lo words
|
||||
jbe short L7 ; if less or equal we are ok, else subtract
|
||||
L6:
|
||||
dec esi ; subtract 1 from quotient
|
||||
sub eax,CRT_LOWORD(DVSR) ; subtract divisor from result
|
||||
sbb edx,CRT_HIWORD(DVSR)
|
||||
L7:
|
||||
xor ebx,ebx ; ebx:esi <- quotient
|
||||
|
||||
L4:
|
||||
;
|
||||
; Calculate remainder by subtracting the result from the original dividend.
|
||||
; Since the result is already in a register, we will do the subtract in the
|
||||
; opposite direction and negate the result if necessary.
|
||||
;
|
||||
|
||||
sub eax,CRT_LOWORD(DVND) ; subtract dividend from result
|
||||
sbb edx,CRT_HIWORD(DVND)
|
||||
|
||||
;
|
||||
; Now check the result sign flag to see if the result is supposed to be positive
|
||||
; or negative. It is currently negated (because we subtracted in the 'wrong'
|
||||
; direction), so if the sign flag is set we are done, otherwise we must negate
|
||||
; the result to make it positive again.
|
||||
;
|
||||
|
||||
dec ebp ; check result sign flag
|
||||
jns short L9 ; result is ok, set up the quotient
|
||||
neg edx ; otherwise, negate the result
|
||||
neg eax
|
||||
sbb edx,0
|
||||
|
||||
;
|
||||
; Now we need to get the quotient into edx:eax and the remainder into ebx:ecx.
|
||||
;
|
||||
L9:
|
||||
mov ecx,edx
|
||||
mov edx,ebx
|
||||
mov ebx,ecx
|
||||
mov ecx,eax
|
||||
mov eax,esi
|
||||
|
||||
;
|
||||
; Just the cleanup left to do. edx:eax contains the quotient. Set the sign
|
||||
; according to the save value, cleanup the stack, and return.
|
||||
;
|
||||
|
||||
dec edi ; check to see if result is negative
|
||||
jnz short L8 ; if EDI == 0, result should be negative
|
||||
neg edx ; otherwise, negate the result
|
||||
neg eax
|
||||
sbb edx,0
|
||||
|
||||
;
|
||||
; Restore the saved registers and return.
|
||||
;
|
||||
|
||||
L8:
|
||||
pop ebp
|
||||
pop esi
|
||||
pop edi
|
||||
|
||||
ret 16
|
||||
}
|
||||
|
||||
#undef DVND
|
||||
#undef DVSR
|
||||
}
|
||||
|
||||
__declspec(naked) void _allmul()
|
||||
{
|
||||
#define A esp + 8 // stack address of a
|
||||
#define B esp + 16 // stack address of b
|
||||
|
||||
__asm
|
||||
{
|
||||
push ebx
|
||||
|
||||
mov eax,CRT_HIWORD(A)
|
||||
mov ecx,CRT_LOWORD(B)
|
||||
mul ecx ;eax has AHI, ecx has BLO, so AHI * BLO
|
||||
mov ebx,eax ;save result
|
||||
|
||||
mov eax,CRT_LOWORD(A)
|
||||
mul CRT_HIWORD(B) ;ALO * BHI
|
||||
add ebx,eax ;ebx = ((ALO * BHI) + (AHI * BLO))
|
||||
|
||||
mov eax,CRT_LOWORD(A) ;ecx = BLO
|
||||
mul ecx ;so edx:eax = ALO*BLO
|
||||
add edx,ebx ;now edx has all the LO*HI stuff
|
||||
|
||||
pop ebx
|
||||
|
||||
ret 16 ; callee restores the stack
|
||||
}
|
||||
|
||||
#undef A
|
||||
#undef B
|
||||
}
|
||||
|
||||
__declspec(naked) void _allrem()
|
||||
{
|
||||
#define DVND esp + 12 // stack address of dividend (a)
|
||||
#define DVSR esp + 20 // stack address of divisor (b)
|
||||
|
||||
__asm
|
||||
{
|
||||
push ebx
|
||||
push edi
|
||||
|
||||
|
||||
; Determine sign of the result (edi = 0 if result is positive, non-zero
|
||||
; otherwise) and make operands positive.
|
||||
|
||||
xor edi,edi ; result sign assumed positive
|
||||
|
||||
mov eax,CRT_HIWORD(DVND) ; hi word of a
|
||||
or eax,eax ; test to see if signed
|
||||
jge short L1 ; skip rest if a is already positive
|
||||
inc edi ; complement result sign flag bit
|
||||
mov edx,CRT_LOWORD(DVND) ; lo word of a
|
||||
neg eax ; make a positive
|
||||
neg edx
|
||||
sbb eax,0
|
||||
mov CRT_HIWORD(DVND),eax ; save positive value
|
||||
mov CRT_LOWORD(DVND),edx
|
||||
L1:
|
||||
mov eax,CRT_HIWORD(DVSR) ; hi word of b
|
||||
or eax,eax ; test to see if signed
|
||||
jge short L2 ; skip rest if b is already positive
|
||||
mov edx,CRT_LOWORD(DVSR) ; lo word of b
|
||||
neg eax ; make b positive
|
||||
neg edx
|
||||
sbb eax,0
|
||||
mov CRT_HIWORD(DVSR),eax ; save positive value
|
||||
mov CRT_LOWORD(DVSR),edx
|
||||
L2:
|
||||
|
||||
;
|
||||
; Now do the divide. First look to see if the divisor is less than 4194304K.
|
||||
; If so, then we can use a simple algorithm with word divides, otherwise
|
||||
; things get a little more complex.
|
||||
;
|
||||
; NOTE - eax currently contains the high order word of DVSR
|
||||
;
|
||||
|
||||
or eax,eax ; check to see if divisor < 4194304K
|
||||
jnz short L3 ; nope, gotta do this the hard way
|
||||
mov ecx,CRT_LOWORD(DVSR) ; load divisor
|
||||
mov eax,CRT_HIWORD(DVND) ; load high word of dividend
|
||||
xor edx,edx
|
||||
div ecx ; edx <- remainder
|
||||
mov eax,CRT_LOWORD(DVND) ; edx:eax <- remainder:lo word of dividend
|
||||
div ecx ; edx <- final remainder
|
||||
mov eax,edx ; edx:eax <- remainder
|
||||
xor edx,edx
|
||||
dec edi ; check result sign flag
|
||||
jns short L4 ; negate result, restore stack and return
|
||||
jmp short L8 ; result sign ok, restore stack and return
|
||||
|
||||
;
|
||||
; Here we do it the hard way. Remember, eax contains the high word of DVSR
|
||||
;
|
||||
|
||||
L3:
|
||||
mov ebx,eax ; ebx:ecx <- divisor
|
||||
mov ecx,CRT_LOWORD(DVSR)
|
||||
mov edx,CRT_HIWORD(DVND) ; edx:eax <- dividend
|
||||
mov eax,CRT_LOWORD(DVND)
|
||||
L5:
|
||||
shr ebx,1 ; shift divisor right one bit
|
||||
rcr ecx,1
|
||||
shr edx,1 ; shift dividend right one bit
|
||||
rcr eax,1
|
||||
or ebx,ebx
|
||||
jnz short L5 ; loop until divisor < 4194304K
|
||||
div ecx ; now divide, ignore remainder
|
||||
|
||||
;
|
||||
; We may be off by one, so to check, we will multiply the quotient
|
||||
; by the divisor and check the result against the orignal dividend
|
||||
; Note that we must also check for overflow, which can occur if the
|
||||
; dividend is close to 2**64 and the quotient is off by 1.
|
||||
;
|
||||
|
||||
mov ecx,eax ; save a copy of quotient in ECX
|
||||
mul CRT_HIWORD(DVSR)
|
||||
xchg ecx,eax ; save product, get quotient in EAX
|
||||
mul CRT_LOWORD(DVSR)
|
||||
add edx,ecx ; EDX:EAX = QUOT * DVSR
|
||||
jc short L6 ; carry means Quotient is off by 1
|
||||
|
||||
;
|
||||
; do long compare here between original dividend and the result of the
|
||||
; multiply in edx:eax. If original is larger or equal, we are ok, otherwise
|
||||
; subtract the original divisor from the result.
|
||||
;
|
||||
|
||||
cmp edx,CRT_HIWORD(DVND) ; compare hi words of result and original
|
||||
ja short L6 ; if result > original, do subtract
|
||||
jb short L7 ; if result < original, we are ok
|
||||
cmp eax,CRT_LOWORD(DVND) ; hi words are equal, compare lo words
|
||||
jbe short L7 ; if less or equal we are ok, else subtract
|
||||
L6:
|
||||
sub eax,CRT_LOWORD(DVSR) ; subtract divisor from result
|
||||
sbb edx,CRT_HIWORD(DVSR)
|
||||
L7:
|
||||
|
||||
;
|
||||
; Calculate remainder by subtracting the result from the original dividend.
|
||||
; Since the result is already in a register, we will do the subtract in the
|
||||
; opposite direction and negate the result if necessary.
|
||||
;
|
||||
|
||||
sub eax,CRT_LOWORD(DVND) ; subtract dividend from result
|
||||
sbb edx,CRT_HIWORD(DVND)
|
||||
|
||||
;
|
||||
; Now check the result sign flag to see if the result is supposed to be positive
|
||||
; or negative. It is currently negated (because we subtracted in the 'wrong'
|
||||
; direction), so if the sign flag is set we are done, otherwise we must negate
|
||||
; the result to make it positive again.
|
||||
;
|
||||
|
||||
dec edi ; check result sign flag
|
||||
jns short L8 ; result is ok, restore stack and return
|
||||
L4:
|
||||
neg edx ; otherwise, negate the result
|
||||
neg eax
|
||||
sbb edx,0
|
||||
|
||||
;
|
||||
; Just the cleanup left to do. edx:eax contains the quotient.
|
||||
; Restore the saved registers and return.
|
||||
;
|
||||
|
||||
L8:
|
||||
pop edi
|
||||
pop ebx
|
||||
|
||||
ret 16
|
||||
}
|
||||
|
||||
#undef DVND
|
||||
#undef DVSR
|
||||
}
|
||||
|
||||
__declspec(naked) void _allshl()
|
||||
{
|
||||
__asm
|
||||
{
|
||||
;
|
||||
; Handle shifts of 64 or more bits (all get 0)
|
||||
;
|
||||
cmp cl, 64
|
||||
jae short RETZERO
|
||||
|
||||
;
|
||||
; Handle shifts of between 0 and 31 bits
|
||||
;
|
||||
cmp cl, 32
|
||||
jae short MORE32
|
||||
shld edx,eax,cl
|
||||
shl eax,cl
|
||||
ret
|
||||
|
||||
;
|
||||
; Handle shifts of between 32 and 63 bits
|
||||
;
|
||||
MORE32:
|
||||
mov edx,eax
|
||||
xor eax,eax
|
||||
and cl,31
|
||||
shl edx,cl
|
||||
ret
|
||||
|
||||
;
|
||||
; return 0 in edx:eax
|
||||
;
|
||||
RETZERO:
|
||||
xor eax,eax
|
||||
xor edx,edx
|
||||
ret
|
||||
}
|
||||
}
|
||||
|
||||
__declspec(naked) void _allshr()
|
||||
{
|
||||
__asm
|
||||
{
|
||||
;
|
||||
; Handle shifts of 64 bits or more (if shifting 64 bits or more, the result
|
||||
; depends only on the high order bit of edx).
|
||||
;
|
||||
cmp cl,64
|
||||
jae short RETSIGN
|
||||
|
||||
;
|
||||
; Handle shifts of between 0 and 31 bits
|
||||
;
|
||||
cmp cl, 32
|
||||
jae short MORE32
|
||||
shrd eax,edx,cl
|
||||
sar edx,cl
|
||||
ret
|
||||
|
||||
;
|
||||
; Handle shifts of between 32 and 63 bits
|
||||
;
|
||||
MORE32:
|
||||
mov eax,edx
|
||||
sar edx,31
|
||||
and cl,31
|
||||
sar eax,cl
|
||||
ret
|
||||
|
||||
;
|
||||
; Return double precision 0 or -1, depending on the sign of edx
|
||||
;
|
||||
RETSIGN:
|
||||
sar edx,31
|
||||
mov eax,edx
|
||||
ret
|
||||
}
|
||||
}
|
||||
|
||||
__declspec(naked) void _aulldiv()
|
||||
{
|
||||
#define DVND esp + 12 // stack address of dividend (a)
|
||||
#define DVSR esp + 20 // stack address of divisor (b)
|
||||
|
||||
__asm
|
||||
{
|
||||
push ebx
|
||||
push esi
|
||||
|
||||
;
|
||||
; Now do the divide. First look to see if the divisor is less than 4194304K.
|
||||
; If so, then we can use a simple algorithm with word divides, otherwise
|
||||
; things get a little more complex.
|
||||
;
|
||||
|
||||
mov eax,CRT_HIWORD(DVSR) ; check to see if divisor < 4194304K
|
||||
or eax,eax
|
||||
jnz short L1 ; nope, gotta do this the hard way
|
||||
mov ecx,CRT_LOWORD(DVSR) ; load divisor
|
||||
mov eax,CRT_HIWORD(DVND) ; load high word of dividend
|
||||
xor edx,edx
|
||||
div ecx ; get high order bits of quotient
|
||||
mov ebx,eax ; save high bits of quotient
|
||||
mov eax,CRT_LOWORD(DVND) ; edx:eax <- remainder:lo word of dividend
|
||||
div ecx ; get low order bits of quotient
|
||||
mov edx,ebx ; edx:eax <- quotient hi:quotient lo
|
||||
jmp short L2 ; restore stack and return
|
||||
|
||||
;
|
||||
; Here we do it the hard way. Remember, eax contains DVSRHI
|
||||
;
|
||||
|
||||
L1:
|
||||
mov ecx,eax ; ecx:ebx <- divisor
|
||||
mov ebx,CRT_LOWORD(DVSR)
|
||||
mov edx,CRT_HIWORD(DVND) ; edx:eax <- dividend
|
||||
mov eax,CRT_LOWORD(DVND)
|
||||
L3:
|
||||
shr ecx,1 ; shift divisor right one bit; hi bit <- 0
|
||||
rcr ebx,1
|
||||
shr edx,1 ; shift dividend right one bit; hi bit <- 0
|
||||
rcr eax,1
|
||||
or ecx,ecx
|
||||
jnz short L3 ; loop until divisor < 4194304K
|
||||
div ebx ; now divide, ignore remainder
|
||||
mov esi,eax ; save quotient
|
||||
|
||||
;
|
||||
; We may be off by one, so to check, we will multiply the quotient
|
||||
; by the divisor and check the result against the orignal dividend
|
||||
; Note that we must also check for overflow, which can occur if the
|
||||
; dividend is close to 2**64 and the quotient is off by 1.
|
||||
;
|
||||
|
||||
mul CRT_HIWORD(DVSR) ; QUOT * CRT_HIWORD(DVSR)
|
||||
mov ecx,eax
|
||||
mov eax,CRT_LOWORD(DVSR)
|
||||
mul esi ; QUOT * CRT_LOWORD(DVSR)
|
||||
add edx,ecx ; EDX:EAX = QUOT * DVSR
|
||||
jc short L4 ; carry means Quotient is off by 1
|
||||
|
||||
;
|
||||
; do long compare here between original dividend and the result of the
|
||||
; multiply in edx:eax. If original is larger or equal, we are ok, otherwise
|
||||
; subtract one (1) from the quotient.
|
||||
;
|
||||
|
||||
cmp edx,CRT_HIWORD(DVND) ; compare hi words of result and original
|
||||
ja short L4 ; if result > original, do subtract
|
||||
jb short L5 ; if result < original, we are ok
|
||||
cmp eax,CRT_LOWORD(DVND) ; hi words are equal, compare lo words
|
||||
jbe short L5 ; if less or equal we are ok, else subtract
|
||||
L4:
|
||||
dec esi ; subtract 1 from quotient
|
||||
L5:
|
||||
xor edx,edx ; edx:eax <- quotient
|
||||
mov eax,esi
|
||||
|
||||
;
|
||||
; Just the cleanup left to do. edx:eax contains the quotient.
|
||||
; Restore the saved registers and return.
|
||||
;
|
||||
|
||||
L2:
|
||||
|
||||
pop esi
|
||||
pop ebx
|
||||
|
||||
ret 16
|
||||
}
|
||||
|
||||
#undef DVND
|
||||
#undef DVSR
|
||||
}
|
||||
|
||||
__declspec(naked) void _aulldvrm()
|
||||
{
|
||||
#define DVND esp + 8 // stack address of dividend (a)
|
||||
#define DVSR esp + 16 // stack address of divisor (b)
|
||||
|
||||
__asm
|
||||
{
|
||||
push esi
|
||||
|
||||
;
|
||||
; Now do the divide. First look to see if the divisor is less than 4194304K.
|
||||
; If so, then we can use a simple algorithm with word divides, otherwise
|
||||
; things get a little more complex.
|
||||
;
|
||||
|
||||
mov eax,CRT_HIWORD(DVSR) ; check to see if divisor < 4194304K
|
||||
or eax,eax
|
||||
jnz short L1 ; nope, gotta do this the hard way
|
||||
mov ecx,CRT_LOWORD(DVSR) ; load divisor
|
||||
mov eax,CRT_HIWORD(DVND) ; load high word of dividend
|
||||
xor edx,edx
|
||||
div ecx ; get high order bits of quotient
|
||||
mov ebx,eax ; save high bits of quotient
|
||||
mov eax,CRT_LOWORD(DVND) ; edx:eax <- remainder:lo word of dividend
|
||||
div ecx ; get low order bits of quotient
|
||||
mov esi,eax ; ebx:esi <- quotient
|
||||
|
||||
;
|
||||
; Now we need to do a multiply so that we can compute the remainder.
|
||||
;
|
||||
mov eax,ebx ; set up high word of quotient
|
||||
mul CRT_LOWORD(DVSR) ; CRT_HIWORD(QUOT) * DVSR
|
||||
mov ecx,eax ; save the result in ecx
|
||||
mov eax,esi ; set up low word of quotient
|
||||
mul CRT_LOWORD(DVSR) ; CRT_LOWORD(QUOT) * DVSR
|
||||
add edx,ecx ; EDX:EAX = QUOT * DVSR
|
||||
jmp short L2 ; complete remainder calculation
|
||||
|
||||
;
|
||||
; Here we do it the hard way. Remember, eax contains DVSRHI
|
||||
;
|
||||
|
||||
L1:
|
||||
mov ecx,eax ; ecx:ebx <- divisor
|
||||
mov ebx,CRT_LOWORD(DVSR)
|
||||
mov edx,CRT_HIWORD(DVND) ; edx:eax <- dividend
|
||||
mov eax,CRT_LOWORD(DVND)
|
||||
L3:
|
||||
shr ecx,1 ; shift divisor right one bit; hi bit <- 0
|
||||
rcr ebx,1
|
||||
shr edx,1 ; shift dividend right one bit; hi bit <- 0
|
||||
rcr eax,1
|
||||
or ecx,ecx
|
||||
jnz short L3 ; loop until divisor < 4194304K
|
||||
div ebx ; now divide, ignore remainder
|
||||
mov esi,eax ; save quotient
|
||||
|
||||
;
|
||||
; We may be off by one, so to check, we will multiply the quotient
|
||||
; by the divisor and check the result against the orignal dividend
|
||||
; Note that we must also check for overflow, which can occur if the
|
||||
; dividend is close to 2**64 and the quotient is off by 1.
|
||||
;
|
||||
|
||||
mul CRT_HIWORD(DVSR) ; QUOT * CRT_HIWORD(DVSR)
|
||||
mov ecx,eax
|
||||
mov eax,CRT_LOWORD(DVSR)
|
||||
mul esi ; QUOT * CRT_LOWORD(DVSR)
|
||||
add edx,ecx ; EDX:EAX = QUOT * DVSR
|
||||
jc short L4 ; carry means Quotient is off by 1
|
||||
|
||||
;
|
||||
; do long compare here between original dividend and the result of the
|
||||
; multiply in edx:eax. If original is larger or equal, we are ok, otherwise
|
||||
; subtract one (1) from the quotient.
|
||||
;
|
||||
|
||||
cmp edx,CRT_HIWORD(DVND) ; compare hi words of result and original
|
||||
ja short L4 ; if result > original, do subtract
|
||||
jb short L5 ; if result < original, we are ok
|
||||
cmp eax,CRT_LOWORD(DVND) ; hi words are equal, compare lo words
|
||||
jbe short L5 ; if less or equal we are ok, else subtract
|
||||
L4:
|
||||
dec esi ; subtract 1 from quotient
|
||||
sub eax,CRT_LOWORD(DVSR) ; subtract divisor from result
|
||||
sbb edx,CRT_HIWORD(DVSR)
|
||||
L5:
|
||||
xor ebx,ebx ; ebx:esi <- quotient
|
||||
|
||||
L2:
|
||||
;
|
||||
; Calculate remainder by subtracting the result from the original dividend.
|
||||
; Since the result is already in a register, we will do the subtract in the
|
||||
; opposite direction and negate the result.
|
||||
;
|
||||
|
||||
sub eax,CRT_LOWORD(DVND) ; subtract dividend from result
|
||||
sbb edx,CRT_HIWORD(DVND)
|
||||
neg edx ; otherwise, negate the result
|
||||
neg eax
|
||||
sbb edx,0
|
||||
|
||||
;
|
||||
; Now we need to get the quotient into edx:eax and the remainder into ebx:ecx.
|
||||
;
|
||||
mov ecx,edx
|
||||
mov edx,ebx
|
||||
mov ebx,ecx
|
||||
mov ecx,eax
|
||||
mov eax,esi
|
||||
;
|
||||
; Just the cleanup left to do. edx:eax contains the quotient.
|
||||
; Restore the saved registers and return.
|
||||
;
|
||||
|
||||
pop esi
|
||||
|
||||
ret 16
|
||||
}
|
||||
|
||||
#undef DVND
|
||||
#undef DVSR
|
||||
}
|
||||
|
||||
__declspec(naked) void _aullrem()
|
||||
{
|
||||
#define DVND esp + 8 // stack address of dividend (a)
|
||||
#define DVSR esp + 16 // stack address of divisor (b)
|
||||
|
||||
__asm
|
||||
{
|
||||
push ebx
|
||||
|
||||
; Now do the divide. First look to see if the divisor is less than 4194304K.
|
||||
; If so, then we can use a simple algorithm with word divides, otherwise
|
||||
; things get a little more complex.
|
||||
;
|
||||
|
||||
mov eax,CRT_HIWORD(DVSR) ; check to see if divisor < 4194304K
|
||||
or eax,eax
|
||||
jnz short L1 ; nope, gotta do this the hard way
|
||||
mov ecx,CRT_LOWORD(DVSR) ; load divisor
|
||||
mov eax,CRT_HIWORD(DVND) ; load high word of dividend
|
||||
xor edx,edx
|
||||
div ecx ; edx <- remainder, eax <- quotient
|
||||
mov eax,CRT_LOWORD(DVND) ; edx:eax <- remainder:lo word of dividend
|
||||
div ecx ; edx <- final remainder
|
||||
mov eax,edx ; edx:eax <- remainder
|
||||
xor edx,edx
|
||||
jmp short L2 ; restore stack and return
|
||||
|
||||
;
|
||||
; Here we do it the hard way. Remember, eax contains DVSRHI
|
||||
;
|
||||
|
||||
L1:
|
||||
mov ecx,eax ; ecx:ebx <- divisor
|
||||
mov ebx,CRT_LOWORD(DVSR)
|
||||
mov edx,CRT_HIWORD(DVND) ; edx:eax <- dividend
|
||||
mov eax,CRT_LOWORD(DVND)
|
||||
L3:
|
||||
shr ecx,1 ; shift divisor right one bit; hi bit <- 0
|
||||
rcr ebx,1
|
||||
shr edx,1 ; shift dividend right one bit; hi bit <- 0
|
||||
rcr eax,1
|
||||
or ecx,ecx
|
||||
jnz short L3 ; loop until divisor < 4194304K
|
||||
div ebx ; now divide, ignore remainder
|
||||
|
||||
;
|
||||
; We may be off by one, so to check, we will multiply the quotient
|
||||
; by the divisor and check the result against the orignal dividend
|
||||
; Note that we must also check for overflow, which can occur if the
|
||||
; dividend is close to 2**64 and the quotient is off by 1.
|
||||
;
|
||||
|
||||
mov ecx,eax ; save a copy of quotient in ECX
|
||||
mul CRT_HIWORD(DVSR)
|
||||
xchg ecx,eax ; put partial product in ECX, get quotient in EAX
|
||||
mul CRT_LOWORD(DVSR)
|
||||
add edx,ecx ; EDX:EAX = QUOT * DVSR
|
||||
jc short L4 ; carry means Quotient is off by 1
|
||||
|
||||
;
|
||||
; do long compare here between original dividend and the result of the
|
||||
; multiply in edx:eax. If original is larger or equal, we're ok, otherwise
|
||||
; subtract the original divisor from the result.
|
||||
;
|
||||
|
||||
cmp edx,CRT_HIWORD(DVND) ; compare hi words of result and original
|
||||
ja short L4 ; if result > original, do subtract
|
||||
jb short L5 ; if result < original, we're ok
|
||||
cmp eax,CRT_LOWORD(DVND) ; hi words are equal, compare lo words
|
||||
jbe short L5 ; if less or equal we're ok, else subtract
|
||||
L4:
|
||||
sub eax,CRT_LOWORD(DVSR) ; subtract divisor from result
|
||||
sbb edx,CRT_HIWORD(DVSR)
|
||||
L5:
|
||||
|
||||
;
|
||||
; Calculate remainder by subtracting the result from the original dividend.
|
||||
; Since the result is already in a register, we will perform the subtract in
|
||||
; the opposite direction and negate the result to make it positive.
|
||||
;
|
||||
|
||||
sub eax,CRT_LOWORD(DVND) ; subtract original dividend from result
|
||||
sbb edx,CRT_HIWORD(DVND)
|
||||
neg edx ; and negate it
|
||||
neg eax
|
||||
sbb edx,0
|
||||
|
||||
;
|
||||
; Just the cleanup left to do. dx:ax contains the remainder.
|
||||
; Restore the saved registers and return.
|
||||
;
|
||||
|
||||
L2:
|
||||
|
||||
pop ebx
|
||||
|
||||
ret 16
|
||||
}
|
||||
|
||||
#undef DVND
|
||||
#undef DVSR
|
||||
}
|
||||
|
||||
__declspec(naked) void _aullshr()
|
||||
{
|
||||
__asm
|
||||
{
|
||||
cmp cl,64
|
||||
jae short RETZERO
|
||||
|
||||
;
|
||||
; Handle shifts of between 0 and 31 bits
|
||||
;
|
||||
cmp cl, 32
|
||||
jae short MORE32
|
||||
shrd eax,edx,cl
|
||||
shr edx,cl
|
||||
ret
|
||||
|
||||
;
|
||||
; Handle shifts of between 32 and 63 bits
|
||||
;
|
||||
MORE32:
|
||||
mov eax,edx
|
||||
xor edx,edx
|
||||
and cl,31
|
||||
shr eax,cl
|
||||
ret
|
||||
|
||||
;
|
||||
; return 0 in edx:eax
|
||||
;
|
||||
RETZERO:
|
||||
xor eax,eax
|
||||
xor edx,edx
|
||||
ret
|
||||
}
|
||||
}
|
||||
|
||||
#undef CRT_LOWORD
|
||||
#undef CRT_HIWORD
|
||||
|
||||
#endif
|
||||
@ -1,23 +1,14 @@
|
||||
/** @file
|
||||
Generic code for compiler intrinsics.
|
||||
|
||||
OcGuardLib
|
||||
|
||||
Copyright (c) 2020, vit9696
|
||||
|
||||
All rights reserved.
|
||||
|
||||
This program and the accompanying materials
|
||||
are licensed and made available under the terms and conditions of the BSD License
|
||||
which accompanies this distribution. The full text of the license may be found at
|
||||
http://opensource.org/licenses/bsd-license.php
|
||||
|
||||
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
||||
|
||||
Copyright (c) 2020, vit9696. All rights reserved.
|
||||
SPDX-License-Identifier: BSD-3-Clause
|
||||
**/
|
||||
|
||||
#include <Library/BaseLib.h>
|
||||
|
||||
GLOBAL_REMOVE_IF_UNREFERENCED BOOLEAN gOcCompilerIntrinsicsLib;
|
||||
|
||||
#if defined(MDE_CPU_IA32) && defined(__clang__) && defined(__apple_build_version__) && __apple_build_version__ < 11000000
|
||||
|
||||
/**
|
||||
@ -25,7 +16,7 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
||||
a 64-bit unsigned result.
|
||||
|
||||
This function is generated by older clang compilers, like ones from Xcode 10.1,
|
||||
when using overflow builtins. The issue is fixed in Xcode 11.
|
||||
when using overflow builtins from OcGuardLib. The issue is fixed in Xcode 11.
|
||||
|
||||
@param Dividend A 64-bit unsigned value.
|
||||
@param Divisor A 64-bit unsigned value.
|
||||
28
Library/OcCompilerIntrinsicsLib/OcCompilerIntrinsicsLib.inf
Normal file
28
Library/OcCompilerIntrinsicsLib/OcCompilerIntrinsicsLib.inf
Normal file
@ -0,0 +1,28 @@
|
||||
## @file
|
||||
# Compiler intrinsic support library.
|
||||
#
|
||||
# Copyright (c) 2020, vit9696. All rights reserved.
|
||||
# SPDX-License-Identifier: BSD-3-Clause
|
||||
##
|
||||
|
||||
[Defines]
|
||||
INF_VERSION = 1.5
|
||||
BASE_NAME = OcCompilerIntrinsicsLib
|
||||
FILE_GUID = AB87D1A9-F9EC-4B66-80EE-E88A15EAA254
|
||||
MODULE_TYPE = BASE
|
||||
VERSION_STRING = 1.0
|
||||
LIBRARY_CLASS = OcCompilerIntrinsicsLib
|
||||
|
||||
[BuildOptions]
|
||||
# FIXME: MSVC compiler flags may need more thought.
|
||||
MSFT:*_*_*_CC_FLAGS = /GL- /Oi-
|
||||
|
||||
[Sources]
|
||||
OcCompilerIntrinsicsLib.c
|
||||
|
||||
[Sources.IA32]
|
||||
MsvcMath32.c | MSFT
|
||||
|
||||
[Packages]
|
||||
MdePkg/MdePkg.dec
|
||||
OcSupportPkg/OcSupportPkg.dec
|
||||
@ -30,7 +30,6 @@
|
||||
|
||||
[Sources]
|
||||
BitOverflow.c
|
||||
Builtins.c
|
||||
Canary.c
|
||||
NativeOverflow.c
|
||||
TripleOverflow.c
|
||||
|
||||
@ -120,6 +120,7 @@
|
||||
OcSupportPkg/Library/OcAppleSecureBootLib/OcAppleSecureBootLib.inf
|
||||
OcSupportPkg/Library/OcAppleUserInterfaceThemeLib/OcAppleUserInterfaceThemeLib.inf
|
||||
OcSupportPkg/Library/OcBootManagementLib/OcBootManagementLib.inf
|
||||
OcSupportPkg/Library/OcCompilerIntrinsicsLib/OcCompilerIntrinsicsLib.inf
|
||||
OcSupportPkg/Library/OcCompressionLib/OcCompressionLib.inf
|
||||
OcSupportPkg/Library/OcConfigurationLib/OcConfigurationLib.inf
|
||||
OcSupportPkg/Library/OcConsoleControlEntryModeLib/OcConsoleControlEntryModeLib.inf
|
||||
@ -188,6 +189,9 @@
|
||||
gEfiMdePkgTokenSpaceGuid.PcdFixedDebugPrintErrorLevel|0x80000042
|
||||
!endif
|
||||
|
||||
[LibraryClasses]
|
||||
NULL|OcSupportPkg/Library/OcCompilerIntrinsicsLib/OcCompilerIntrinsicsLib.inf
|
||||
|
||||
[BuildOptions]
|
||||
# While there are no PCDs as of now, there at least are some custom macros.
|
||||
DEFINE OCSUPPORTPKG_BUILD_OPTIONS_GEN = -D DISABLE_NEW_DEPRECATED_INTERFACES $(OCSUPPORTPKG_BUILD_OPTIONS)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user