2022-02-23 17:13:50 +08:00

627 lines
19 KiB
Python

"""
Contains a collection of thermodynamic calculations.
Ported from MetPy.
"""
import warnings
from .. import constants
from ..cbook import broadcast_indices
from .tools import find_bounding_indices, _less_or_close
from ..interpolate import interpolate_1d
import mipylib.numeric as np
import mipylib.numeric.optimize as so
__all__ = [
'equivalent_potential_temperature','exner_function',
'mixing_ratio','mixing_ratio_from_specific_humidity','potential_temperature',
'relative_humidity_from_specific_humidity',
'saturation_mixing_ratio','saturation_vapor_pressure','temperature_from_potential_temperature',
'virtual_temperature','dry_static_energy','isentropic_interpolation',
'dewpoint','dewpoint_from_relative_humidity','specific_humidity_from_dewpoint',
'specific_humidity_from_mixing_ratio','specific_humidity_from_relative_humidity'
]
def saturation_vapor_pressure(temperature):
r"""Calculate the saturation water vapor (partial) pressure.
Parameters
----------
temperature : `float`
The temperature (kelvin)
Returns
-------
`float`
The saturation water vapor (partial) pressure
See Also
--------
vapor_pressure, dewpoint
Notes
-----
Instead of temperature, dewpoint may be used in order to calculate
the actual (ambient) water vapor (partial) pressure.
The formula used is that from [Bolton1980]_ for T in degrees Celsius:
.. math:: 6.112 e^\frac{17.67T}{T + 243.5}
"""
# Converted from original in terms of C to use kelvin.
return constants.sat_pressure_0c * np.exp(17.67 * (temperature - 273.15) /
(temperature - 29.65))
def mixing_ratio_from_specific_humidity(specific_humidity):
r"""Calculate the mixing ratio from specific humidity.
Parameters
----------
specific_humidity: `pint.Quantity`
Specific humidity of air
Returns
-------
`pint.Quantity`
Mixing ratio
Notes
-----
Formula from [Salby1996]_ pg. 118.
.. math:: w = \frac{q}{1-q}
* :math:`w` is mixing ratio
* :math:`q` is the specific humidity
See Also
--------
mixing_ratio, specific_humidity_from_mixing_ratio
"""
return specific_humidity / (1 - specific_humidity)
def mixing_ratio(part_press, tot_press):
"""
Calculates the mixing ratio of gas given its partial pressure
and the total pressure of the air.
There are no required units for the input arrays, other than that
they have the same units.
Parameters
----------
part_press : array_like
Partial pressure of the constituent gas
tot_press : array_like
Total air pressure
Returns
-------
array_like
The (mass) mixing ratio, dimensionless (e.g. Kg/Kg or g/g)
See Also
--------
vapor_pressure
"""
return constants.epsilon * part_press / (tot_press - part_press)
def saturation_mixing_ratio(tot_press, temperature):
"""
Calculates the saturation mixing ratio given total pressure
and the temperature.
The implementation uses the formula outlined in [4]
Parameters
----------
tot_press: array_like
Total atmospheric pressure (hPa)
temperature: array_like
The temperature (kelvin)
Returns
-------
array_like
The saturation mixing ratio, dimensionless
References
----------
.. [4] Hobbs, Peter V. and Wallace, John M., 1977: Atmospheric Science, an Introductory
Survey. 73.
"""
return mixing_ratio(saturation_vapor_pressure(temperature), tot_press)
def relative_humidity_from_specific_humidity(pressure, temperature, specific_humidity):
r"""Calculate the relative humidity from specific humidity, temperature, and pressure.
Parameters
----------
pressure: `array`
Total atmospheric pressure
temperature: `array`
Air temperature
specific_humidity: `array`
Specific humidity of air
Returns
-------
`array`
Relative humidity
Notes
-----
Formula based on that from [Hobbs1977]_ pg. 74. and [Salby1996]_ pg. 118.
.. math:: RH = \frac{q}{(1-q)w_s}
* :math:`RH` is relative humidity as a unitless ratio
* :math:`q` is specific humidity
* :math:`w_s` is the saturation mixing ratio
See Also
--------
relative_humidity_from_mixing_ratio
"""
return (mixing_ratio_from_specific_humidity(specific_humidity)
/ saturation_mixing_ratio(pressure, temperature))
def exner_function(pressure, reference_pressure=constants.P0):
r"""Calculate the Exner function.
.. math:: \Pi = \left( \frac{p}{p_0} \right)^\kappa
This can be used to calculate potential temperature from temperature (and visa-versa),
since
.. math:: \Pi = \frac{T}{\theta}
Parameters
----------
pressure : `pint.Quantity`
The total atmospheric pressure
reference_pressure : `pint.Quantity`, optional
The reference pressure against which to calculate the Exner function, defaults to P0
Returns
-------
`pint.Quantity`
The value of the Exner function at the given pressure
See Also
--------
potential_temperature
temperature_from_potential_temperature
"""
return (pressure / reference_pressure)**constants.kappa
def potential_temperature(pressure, temperature):
"""
Calculate the potential temperature.
Uses the Poisson equation to calculation the potential temperature
given `pressure` and `temperature`.
Parameters
----------
pressure : array_like
The total atmospheric pressure
temperature : array_like
The temperature
Returns
-------
array_like
The potential temperature corresponding to the the temperature and
pressure.
See Also
--------
dry_lapse
Notes
-----
Formula:
.. math:: \Theta = T (P_0 / P)^\kappa
"""
return temperature / exner_function(pressure)
def temperature_from_potential_temperature(pressure, potential_temperature):
r"""Calculate the temperature from a given potential temperature.
Uses the inverse of the Poisson equation to calculate the temperature from a
given potential temperature at a specific pressure level.
Parameters
----------
pressure : `array`
The total atmospheric pressure (hPa)
potential_temperature : `array`
The potential temperature (Kelvin)
Returns
-------
`array` (kelvin)
The temperature corresponding to the potential temperature and pressure.
See Also
--------
dry_lapse
potential_temperature
Notes
-----
Formula:
.. math:: T = \Theta (P / P_0)^\kappa
"""
return potential_temperature * exner_function(pressure)
def equivalent_potential_temperature(pressure, temperature, dewpoint):
r"""Calculate equivalent potential temperature.
This calculation must be given an air parcel's pressure, temperature, and dewpoint.
The implementation uses the formula outlined in [Bolton1980]_:
First, the LCL temperature is calculated:
.. math:: T_{L}=\frac{1}{\frac{1}{T_{D}-56}+\frac{ln(T_{K}/T_{D})}{800}}+56
Which is then used to calculate the potential temperature at the LCL:
.. math:: \theta_{DL}=T_{K}\left(\frac{1000}{p-e}\right)^k
\left(\frac{T_{K}}{T_{L}}\right)^{.28r}
Both of these are used to calculate the final equivalent potential temperature:
.. math:: \theta_{E}=\theta_{DL}\exp\left[\left(\frac{3036.}{T_{L}}
-1.78\right)*r(1+.448r)\right]
Parameters
----------
pressure: `float`
Total atmospheric pressure (hPa)
temperature: `float`
Temperature of parcel (kelvin)
dewpoint: `float`
Dewpoint of parcel (kelvin)
Returns
-------
`float`
The equivalent potential temperature of the parcel (kelvin)
Notes
-----
[Bolton1980]_ formula for Theta-e is used, since according to
[DaviesJones2009]_ it is the most accurate non-iterative formulation
available.
"""
t = temperature
td = dewpoint
e = saturation_vapor_pressure(dewpoint)
r = saturation_mixing_ratio(pressure, dewpoint)
t_l = 56 + 1. / (1. / (td - 56) + np.log(t / td) / 800.)
th_l = potential_temperature(pressure - e, temperature) * (t / t_l) ** (0.28 * r)
return th_l * np.exp(r * (1 + 0.448 * r) * (3036. / t_l - 1.78))
def virtual_temperature(temperature, mixing, molecular_weight_ratio=constants.epsilon):
r"""Calculate virtual temperature.
This calculation must be given an air parcel's temperature and mixing ratio.
The implementation uses the formula outlined in [Hobbs2006]_ pg.80.
Parameters
----------
temperature: `array`
air temperature
mixing : `array`
dimensionless mass mixing ratio
molecular_weight_ratio : float, optional
The ratio of the molecular weight of the constituent gas to that assumed
for air. Defaults to the ratio for water vapor to dry air.
(:math:`\epsilon\approx0.622`).
Returns
-------
`array`
The corresponding virtual temperature of the parcel
Notes
-----
.. math:: T_v = T \frac{\text{w} + \epsilon}{\epsilon\,(1 + \text{w})}
"""
return temperature * ((mixing + molecular_weight_ratio)
/ (molecular_weight_ratio * (1 + mixing)))
def dry_static_energy(height, temperature):
r"""Calculate the dry static energy of parcels.
This function will calculate the dry static energy following the first two terms of
equation 3.72 in [Hobbs2006]_.
Parameters
----------
height : `array`
Atmospheric height
temperature : `array`
Air temperature
Returns
-------
`array`
Dry static energy
See Also
--------
montgomery_streamfunction
Notes
-----
.. math:: \text{dry static energy} = c_{pd} T + gz
* :math:`T` is temperature
* :math:`z` is height
"""
return constants.g * height + constants.Cp_d * temperature
def isentropic_interpolation(levels, pressure, temperature, *args, **kwargs):
r"""Interpolate data in isobaric coordinates to isentropic coordinates.
Parameters
----------
levels : array
One-dimensional array of desired potential temperature surfaces
pressure : array
One-dimensional array of pressure levels
temperature : array
Array of temperature
vertical_dim : int, optional
The axis corresponding to the vertical in the temperature array, defaults to 0.
temperature_out : bool, optional
If true, will calculate temperature and output as the last item in the output list.
Defaults to False.
max_iters : int, optional
Maximum number of iterations to use in calculation, defaults to 50.
eps : float, optional
The desired absolute error in the calculated value, defaults to 1e-6.
bottom_up_search : bool, optional
Controls whether to search for levels bottom-up, or top-down. Defaults to
True, which is bottom-up search.
args : array, optional
Any additional variables will be interpolated to each isentropic level
Returns
-------
list
List with pressure at each isentropic level, followed by each additional
argument interpolated to isentropic coordinates.
See Also
--------
potential_temperature, isentropic_interpolation_as_dataset
Notes
-----
Input variable arrays must have the same number of vertical levels as the pressure levels
array. Pressure is calculated on isentropic surfaces by assuming that temperature varies
linearly with the natural log of pressure. Linear interpolation is then used in the
vertical to find the pressure at each isentropic level. Interpolation method from
[Ziv1994]_. Any additional arguments are assumed to vary linearly with temperature and will
be linearly interpolated to the new isentropic levels.
Will only return Pint Quantities, even when given xarray DataArray profiles. To
obtain a xarray Dataset instead, use `isentropic_interpolation_as_dataset` instead.
"""
# iteration function to be used later
# Calculates theta from linearly interpolated temperature and solves for pressure
def _isen_iter(iter_log_p, isentlevs_nd, ka, a, b, pok):
exner = pok * np.exp(-ka * iter_log_p)
t = a * iter_log_p + b
# Newton-Raphson iteration
f = isentlevs_nd - t * exner
fp = exner * (ka * t - a)
return iter_log_p - (f / fp)
# Get dimensions in temperature
ndim = temperature.ndim
# Convert units
#pressure = pressure.to('hPa')
#temperature = temperature.to('kelvin')
vertical_dim = kwargs.pop('vertical_dim', 0)
slices = [np.newaxis] * ndim
slices[vertical_dim] = slice(None)
slices = tuple(slices)
pressure = np.broadcast_to(pressure[slices], temperature.shape)
# Sort input data
sort_pressure = np.argsort(pressure, axis=vertical_dim)
sort_pressure = np.swapaxes(np.swapaxes(sort_pressure, 0, vertical_dim)[::-1], 0,
vertical_dim)
sorter = broadcast_indices(pressure, sort_pressure, ndim, vertical_dim)
levs = pressure[sorter]
tmpk = temperature[sorter]
levels = np.asarray(levels).reshape(-1)
isentlevels = levels[np.argsort(levels)]
# Make the desired isentropic levels the same shape as temperature
shape = list(temperature.shape)
shape[vertical_dim] = isentlevels.size
isentlevs_nd = np.broadcast_to(isentlevels[slices], shape)
# exponent to Poisson's Equation, which is imported above
ka = constants.kappa
# calculate theta for each point
pres_theta = potential_temperature(levs, tmpk)
# Raise error if input theta level is larger than pres_theta max
if np.max(pres_theta) < np.max(levels):
raise ValueError('Input theta level out of data bounds')
# Find log of pressure to implement assumption of linear temperature dependence on
# ln(p)
log_p = np.log(levs)
# Calculations for interpolation routine
pok = constants.P0 ** ka
# index values for each point for the pressure level nearest to the desired theta level
bottom_up_search = kwargs.pop('bottom_up_search', True)
above, below, good = find_bounding_indices(pres_theta, levels, vertical_dim,
from_below=bottom_up_search)
# calculate constants for the interpolation
a = (tmpk[above] - tmpk[below]) / (log_p[above] - log_p[below])
b = tmpk[above] - a * log_p[above]
# calculate first guess for interpolation
isentprs = 0.5 * (log_p[above] + log_p[below])
# Make sure we ignore any nans in the data for solving; checking a is enough since it
# combines log_p and tmpk.
good &= ~np.isnan(a)
# iterative interpolation using scipy.optimize.fixed_point and _isen_iter defined above
max_iters = kwargs.pop('max_iters', 50)
eps = kwargs.pop('eps', 1e-6)
log_p_solved = so.fixed_point(_isen_iter, isentprs[good],
args=(isentlevs_nd[good], ka, a[good], b[good], pok),
xtol=eps, maxiter=max_iters)
# get back pressure from log p
isentprs[good] = np.exp(log_p_solved)
# Mask out points we know are bad as well as points that are beyond the max pressure
isentprs[~(good & _less_or_close(isentprs, np.max(pressure)))] = np.nan
# create list for storing output data
ret = [isentprs]
# if temperature_out = true, calculate temperature and output as last item in list
temperature_out = kwargs.pop('temperature_out', False)
if temperature_out:
ret.append(isentlevs_nd / ((constants.P0 / isentprs) ** ka))
# do an interpolation for each additional argument
if args:
others = interpolate_1d(isentlevels, pres_theta, *(arr[sorter] for arr in args),
axis=vertical_dim, return_list_always=True)
ret.extend(others)
return ret
def dewpoint_from_relative_humidity(temperature, rh):
r"""Calculate the ambient dewpoint given air temperature and relative humidity.
Parameters
----------
temperature : `float`
Air temperature (celsius)
rh : `float`
Relative humidity expressed as a ratio in the range 0 < rh <= 1
Returns
-------
`float`
The dew point temperature (celsius)
See Also
--------
dewpoint, saturation_vapor_pressure
"""
if np.any(rh > 1.2):
warnings.warn('Relative humidity >120%, ensure proper units.')
return dewpoint(rh * saturation_vapor_pressure(temperature))
def dewpoint(vapor_pressure):
r"""Calculate the ambient dewpoint given the vapor pressure.
Parameters
----------
vapor_pressure : `array`
Water vapor partial pressure
Returns
-------
`array`
Dew point temperature
See Also
--------
dewpoint_rh, saturation_vapor_pressure, vapor_pressure
Notes
-----
This function inverts the [Bolton1980]_ formula for saturation vapor
pressure to instead calculate the temperature. This yield the following
formula for dewpoint in degrees Celsius:
.. math:: T = \frac{243.5 log(e / 6.112)}{17.67 - log(e / 6.112)}
"""
val = np.log(vapor_pressure / constants.nounit.sat_pressure_0c)
return constants.nounit.zero_degc + 243.5 * val / (17.67 - val)
def specific_humidity_from_mixing_ratio(mixing_ratio):
r"""Calculate the specific humidity from the mixing ratio.
Parameters
----------
mixing_ratio: `array`
Mixing ratio
Returns
-------
`array`
Specific humidity
See Also
--------
mixing_ratio, mixing_ratio_from_specific_humidity
Notes
-----
Formula from [Salby1996]_ pg. 118.
.. math:: q = \frac{w}{1+w}
* :math:`w` is mixing ratio
* :math:`q` is the specific humidity
"""
return mixing_ratio / (1 + mixing_ratio)
def specific_humidity_from_dewpoint(pressure, dewpoint):
r"""Calculate the specific humidity from the dewpoint temperature and pressure.
Parameters
----------
dewpoint: `array`
Dewpoint temperature
pressure: `array`
Pressure
Returns
-------
`array`
Specific humidity
See Also
--------
mixing_ratio, saturation_mixing_ratio
"""
mixing_ratio = saturation_mixing_ratio(pressure, dewpoint)
return specific_humidity_from_mixing_ratio(mixing_ratio)
def specific_humidity_from_relative_humidity(pressure, temperature, rh):
"""Calculate specific humidity from relative humidity, pressure and temperature.
Parameters
----------
pressure: `array`
Pressure
temperature: `array`
temperature
rh: `array`
relative humidity
Returns
-------
`array`
Specific humidity
"""
dp = dewpoint_from_relative_humidity(temperature, rh)
return specific_humidity_from_dewpoint(pressure, dp)