mirror of
https://github.com/meteoinfo/MeteoInfo.git
synced 2025-12-08 20:36:05 +00:00
145 lines
5.2 KiB
Python
145 lines
5.2 KiB
Python
#from org.apache.commons.math3.analysis import UnivariateFunction
|
|
from org.meteoinfo.math.optimize import OptimizeUtil, ParamUnivariateFunction
|
|
from org.apache.commons.math3.fitting.leastsquares import LeastSquaresBuilder, LevenbergMarquardtOptimizer
|
|
|
|
import warnings
|
|
from ..core import numeric as np
|
|
from ._lsq.least_squares import prepare_bounds
|
|
from ..linalg import cholesky, solve_triangular, svd
|
|
|
|
#__all__ = ['fsolve', 'leastsq', 'fixed_point', 'curve_fit']
|
|
__all__ = ['curve_fit']
|
|
|
|
def _check_func(checker, argname, thefunc, x0, args, numinputs,
|
|
output_shape=None):
|
|
res = np.atleast_1d(thefunc(*((x0[:numinputs],) + args)))
|
|
if (output_shape is not None) and (np.shape(res) != output_shape):
|
|
if (output_shape[0] != 1):
|
|
if len(output_shape) > 1:
|
|
if output_shape[1] == 1:
|
|
return shape(res)
|
|
msg = "%s: there is a mismatch between the input and output " \
|
|
"shape of the '%s' argument" % (checker, argname)
|
|
func_name = getattr(thefunc, '__name__', None)
|
|
if func_name:
|
|
msg += " '%s'." % func_name
|
|
else:
|
|
msg += "."
|
|
msg += 'Shape should be %s but it is %s.' % (output_shape, np.shape(res))
|
|
raise TypeError(msg)
|
|
return np.shape(res), res.dtype
|
|
|
|
def _wrap_func(func, xdata, ydata, transform):
|
|
if transform is None:
|
|
def func_wrapped(params):
|
|
return func(xdata, *params) - ydata
|
|
elif transform.ndim == 1:
|
|
def func_wrapped(params):
|
|
return transform * (func(xdata, *params) - ydata)
|
|
else:
|
|
# Chisq = (y - yd)^T C^{-1} (y-yd)
|
|
# transform = L such that C = L L^T
|
|
# C^{-1} = L^{-T} L^{-1}
|
|
# Chisq = (y - yd)^T L^{-T} L^{-1} (y-yd)
|
|
# Define (y-yd)' = L^{-1} (y-yd)
|
|
# by solving
|
|
# L (y-yd)' = (y-yd)
|
|
# and minimize (y-yd)'^T (y-yd)'
|
|
def func_wrapped(params):
|
|
return solve_triangular(transform, func(xdata, *params) - ydata, lower=True)
|
|
return func_wrapped
|
|
|
|
def _wrap_jac(jac, xdata, transform):
|
|
if transform is None:
|
|
def jac_wrapped(params):
|
|
return jac(xdata, *params)
|
|
elif transform.ndim == 1:
|
|
def jac_wrapped(params):
|
|
return transform[:, np.newaxis] * np.asarray(jac(xdata, *params))
|
|
else:
|
|
def jac_wrapped(params):
|
|
return solve_triangular(transform, np.asarray(jac(xdata, *params)), lower=True)
|
|
return jac_wrapped
|
|
|
|
def _initialize_feasible(lb, ub):
|
|
p0 = np.ones_like(lb)
|
|
lb_finite = np.isfinite(lb)
|
|
ub_finite = np.isfinite(ub)
|
|
|
|
mask = lb_finite & ub_finite
|
|
p0[mask] = 0.5 * (lb[mask] + ub[mask])
|
|
|
|
mask = lb_finite & ~ub_finite
|
|
p0[mask] = lb[mask] + 1
|
|
|
|
mask = ~lb_finite & ub_finite
|
|
p0[mask] = ub[mask] - 1
|
|
|
|
return p0
|
|
|
|
class UniFunc(ParamUnivariateFunction):
|
|
def __init__(self, f):
|
|
'''
|
|
Initialize
|
|
|
|
:param f: Jython function
|
|
'''
|
|
self.f = f
|
|
self._args = list(f.__code__.co_varnames)[1:]
|
|
self._args = tuple(self._args)
|
|
self.order = len(self._args)
|
|
|
|
def value(self, x):
|
|
args = tuple(self.getParameters())
|
|
return self.f(x, *args)
|
|
|
|
def curve_fit(f, xdata, ydata, p0=None, sigma=None, absolute_sigma=False,
|
|
check_finite=True, bounds=(-np.inf, np.inf), method=None,
|
|
jac=None, **kwargs):
|
|
'''
|
|
Use non-linear least squares to fit a function, f, to data.
|
|
|
|
Assumes ``ydata = f(xdata, *params) + eps``
|
|
|
|
:param f: callable
|
|
The model function, f(x, ...). It must take the independent
|
|
variable as the first argument and the parameters to fit as
|
|
separate remaining arguments.
|
|
:param xdata: array_like or object
|
|
The independent variable where the data is measured.
|
|
Should usually be an M-length sequence or an (k,M)-shaped array for
|
|
functions with k predictors, but can actually be any object.
|
|
:param ydata: array_like
|
|
The dependent data, a length M array - nominally ``f(xdata, ...)``.
|
|
:param p0: array_like, optional
|
|
Initial guess for the parameters (length N). If None, then the
|
|
initial values will all be 1 (if the number of parameters for the
|
|
function can be determined using introspection, otherwise a
|
|
ValueError is raised).
|
|
:return:
|
|
'''
|
|
if p0 is None:
|
|
# determine number of parameters by inspecting the function
|
|
from ..lib._util import getargspec_no_self as _getargspec
|
|
args, varargs, varkw, defaults = _getargspec(f)
|
|
if len(args) < 2:
|
|
raise ValueError("Unable to determine number of fit parameters.")
|
|
n = len(args) - 1
|
|
p0 = np.ones(n)
|
|
else:
|
|
p0 = np.atleast_1d(p0)
|
|
n = p0.size
|
|
|
|
func = UniFunc(f)
|
|
jac_func = OptimizeUtil.getJacobianFunction(func, xdata.asarray(), func.order, 5, 0.1)
|
|
problem = LeastSquaresBuilder().start(p0.tojarray('double')). \
|
|
model(jac_func). \
|
|
target(ydata.tojarray('double')). \
|
|
lazyEvaluation(False). \
|
|
maxEvaluations(1000). \
|
|
maxIterations(1000). \
|
|
build()
|
|
optimum = LevenbergMarquardtOptimizer().optimize(problem)
|
|
r = tuple(optimum.getPoint().toArray())
|
|
|
|
return r |