129 lines
4.3 KiB
Python

#-----------------------------------------------------
# Author: Yaqiang Wang
# Date: 2018-11-23
# Purpose: MeteoInfoLab wrf module
# Note: Jython, some functions revised from wrf-python
#-----------------------------------------------------
from org.meteoinfo.math.meteo import MeteoMath
from mipylib.numeric.core import NDArray, DimArray
import constants as constants
from .calc.thermo import relative_humidity_from_specific_humidity, temperature_from_potential_temperature
__all__ = [
'destagger','get_slp','get_rh','get_rh2m'
]
def destagger(var, stagger_dim):
"""
Return the variable data array on the unstaggered grid.
This function destaggers the variable by taking the average of the
values located on either side of the grid box.
:param var: (*array*) A variable on a staggered grid.
:param stagger_dim: (*int*) The dimension index to destagger.
Negative values can be used to choose dimensions referenced
from the right hand side (-1 is the rightmost dimension).
:returns: (*array*) The destaggered variable data array.
"""
var_shape = var.shape
num_dims = var.ndim
stagger_dim_size = var_shape[stagger_dim]
# Dynamically building the range slices to create the appropriate
# number of ':'s in the array accessor lists.
# For example, for a 3D array, the calculation would be
# result = .5 * (var[:,:,0:stagger_dim_size-2]
# + var[:,:,1:stagger_dim_size-1])
# for stagger_dim=2. So, full slices would be used for dims 0 and 1, but
# dim 2 needs the special slice.
full_slice = slice(None)
slice1 = slice(0, stagger_dim_size - 1, 1)
slice2 = slice(1, stagger_dim_size, 1)
# default to full slices
dim_ranges_1 = [full_slice] * num_dims
dim_ranges_2 = [full_slice] * num_dims
# for the stagger dim, insert the appropriate slice range
dim_ranges_1[stagger_dim] = slice1
dim_ranges_2[stagger_dim] = slice2
result = .5*(var[tuple(dim_ranges_1)] + var[tuple(dim_ranges_2)])
return result
def get_slp(wrfin, timeidx=0, units='hPa'):
'''
Return the sea level pressure in the specified units.
This function extracts the necessary variables from the NetCDF file
object in order to perform the calculation.
:param wrfin: (*DimDataFile*) Data file.
:param timeidx: (*int*) Time index.
:param units: (*string*) The desired units.
:returns: (*array*) Sea level pressure.
'''
t = wrfin['T'][timeidx,:,:,:]
p = wrfin['P'][timeidx,:,:,:]
pb = wrfin['PB'][timeidx,:,:,:]
qvapor = wrfin['QVAPOR'][timeidx,:,:,:]
ph = wrfin['PH'][timeidx,:,:,:]
phb = wrfin['PHB'][timeidx,:,:,:]
full_t = t + constants.T_BASE
full_p = p + pb
qvapor[qvapor < 0] = 0.
full_ph = (ph + phb) / constants.g
destag_ph = destagger(full_ph, -3)
tk = temperature_from_potential_temperature(full_p * 0.01, full_t)
slp = MeteoMath.calSeaPrs(destag_ph._array, tk._array, full_p._array, qvapor._array)
return DimArray(slp, dims=t.dims[1:])
def get_rh(wrfin, timeidx=0):
'''
Return the relative humidity.
This functions extracts the necessary variables from the NetCDF file
object in order to perform the calculation.
:param wrfin: (*DimDataFile*) Data file.
:param timeidx: (*int*) Time index.
:returns: (*array*) Relative humidity.
'''
t = wrfin['T'][timeidx,:,:,:]
p = wrfin['P'][timeidx,:,:,:]
pb = wrfin['PB'][timeidx,:,:,:]
qvapor = wrfin['QVAPOR'][timeidx,:,:,:]
full_t = t + constants.T_BASE
full_p = p + pb
qvapor[qvapor < 0] = 0.
tk = temperature_from_potential_temperature(full_p * 0.01, full_t)
rh = relative_humidity_from_specific_humidity(full_p * 0.01, tk, qvapor)
return rh
def get_rh2m(wrfin, timeidx=0):
'''
Return the 2m relative humidity.
This functions extracts the necessary variables from the NetCDF file
object in order to perform the calculation.
:param wrfin: (*DimDataFile*) Data file.
:param timeidx: (*int*) Time index.
:returns: (*array*) Relative humidity.
'''
t2 = wrfin['T2'][timeidx,:,:]
psfc = wrfin['PSFC'][timeidx,:,:]
q2 = wrfin['Q2'][timeidx,:,:]
q2[q2 < 0] = 0.
rh = relative_humidity_from_specific_humidity(psfc * 0.01, t2, q2)
return rh