2020-08-03 11:23:13 +08:00

287 lines
8.0 KiB
Python

# coding=utf-8
#-----------------------------------------------------
# Author: Yaqiang Wang
# Date: 2017-1-12
# Purpose: MeteoInfoLab linear algebra module
# Note: Jython
#-----------------------------------------------------
from org.meteoinfo.math.linalg import LinalgUtil
from org.meteoinfo.math.stats import StatsUtil
from ..core import NDArray
__all__ = [
'solve','cholesky','det','lu','qr', 'svd','eig','inv','lstsq','solve_triangular'
]
class LinAlgError(Exception):
"""
Generic Python-exception-derived object raised by linalg functions.
General purpose exception class, derived from Python's exception.Exception
class, programmatically raised in linalg functions when a Linear
Algebra-related condition would prevent further correct execution of the
function.
"""
pass
def _assert_2d(*arrays):
for a in arrays:
if a.ndim != 2:
raise LinAlgError('%d-dimensional array given. Array must be '
'two-dimensional' % a.ndim)
def solve(a, b):
'''
Solve a linear matrix equation, or system of linear scalar equations.
Computes the "exact" solution, ``x``, of the well-determined, i.e., full
rank, linear matrix equation ``ax = b``.
``Parameters``
a : (M, M) array_like
Coefficient matrix.
b : {(M), (M, K)}, array_like
Ordinate or "dependent variable" values.
``Returns``
x : {(M), (M, K)} ndarray
Solution to the system a x = b. Returned shape is identical to ``b``.
'''
_assert_2d(a)
r_2d = False
if b.ndim == 2:
b = b.flatten()
r_2d = True
x = LinalgUtil.solve(a.asarray(), b.asarray())
r = NDArray(x)
if r_2d:
r = r.reshape((len(r),1))
return r
def solve_triangular(a, b, lower=False):
'''
Solve the equation `a x = b` for `x`, assuming a is a triangular matrix.
Parameters
--------------
a : (M, M) array_like
A triangular matrix.
b : {(M), (M, K)}, array_like
Right-hand side matrix in `a x = b`
lower : bool, optional
Use only data contained in the lower triangle of `a`.
Default is to use upper triangle.
``Returns``
x : {(M), (M, K)} ndarray
Solution to the system a x = b. Returned shape is identical to ``b``.
'''
x = LinalgUtil.solve(a.asarray(), b.asarray())
return NDArray(x)
def cholesky(a):
'''
Cholesky decomposition.
Return the Cholesky decomposition, `L * L.H`, of the square matrix `a`,
where `L` is lower-triangular and .H is the conjugate transpose operator
(which is the ordinary transpose if `a` is real-valued). `a` must be
Hermitian (symmetric if real-valued) and positive-definite. Only `L` is
actually returned.
Parameters
----------
a : (M, M) array_like
Hermitian (symmetric if all elements are real), positive-definite
input matrix.
Returns
-------
L : (M, M) array_like
Upper or lower-triangular Cholesky factor of `a`. Returns a
matrix object if `a` is a matrix object.
'''
r = LinalgUtil.cholesky(a.asarray())
return NDArray(r)
def lu(a):
'''
Compute pivoted LU decomposition of a matrix.
The decomposition is::
A = P L U
where P is a permutation matrix, L lower triangular with unit
diagonal elements, and U upper triangular.
Parameters
----------
a : (M, M) array_like
Array to decompose
permute_l : bool, optional
Perform the multiplication P*L (Default: do not permute)
overwrite_a : bool, optional
Whether to overwrite data in a (may improve performance)
check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns
-------
p : (M, M) ndarray
Permutation matrix
l : (M, M) ndarray
Lower triangular or trapezoidal matrix with unit diagonal.
u : (M, M) ndarray
Upper triangular or trapezoidal matrix
'''
r = LinalgUtil.lu(a.asarray())
p = NDArray(r[0])
l = NDArray(r[1])
u = NDArray(r[2])
return p, l, u
def qr(a):
'''
Compute QR decomposition of a matrix.
Calculate the decomposition ``A = Q R`` where Q is unitary/orthogonal
and R upper triangular.
Parameters
----------
a : (M, N) array_like
Matrix to be decomposed
Returns
-------
Q : float or complex ndarray
Of shape (M, M), or (M, K) for ``mode='economic'``. Not returned
if ``mode='r'``.
R : float or complex ndarray
Of shape (M, N), or (K, N) for ``mode='economic'``. ``K = min(M, N)``.
'''
r = LinalgUtil.qr(a.asarray())
q = NDArray(r[0])
r = NDArray(r[1])
return q, r
def svd(a):
'''
Singular Value Decomposition.
Factorizes the matrix a into two unitary matrices U and Vh, and
a 1-D array s of singular values (real, non-negative) such that
``a == U*S*Vh``, where S is a suitably shaped matrix of zeros with
main diagonal s.
Parameters
----------
a : (M, N) array_like
Matrix to decompose.
Returns
-------
U : ndarray
Unitary matrix having left singular vectors as columns.
Of shape ``(M,K)``.
s : ndarray
The singular values, sorted in non-increasing order.
Of shape (K,), with ``K = min(M, N)``.
Vh : ndarray
Unitary matrix having right singular vectors as rows.
Of shape ``(N,N)``.
'''
#r = LinalgUtil.svd(a.asarray())
r = LinalgUtil.svd_EJML(a.asarray())
U = NDArray(r[0])
s = NDArray(r[1])
Vh = NDArray(r[2])
return U, s, Vh
def eig(a):
'''
Compute the eigenvalues and right eigenvectors of a square array.
Parameters
----------
a : (M, M) array
Matrices for which the eigenvalues and right eigenvectors will
be computed
Returns
-------
w : (M) array
The eigenvalues, each repeated according to its multiplicity.
The eigenvalues are not necessarily ordered. The resulting
array will be of complex type, unless the imaginary part is
zero in which case it will be cast to a real type. When `a`
is real the resulting eigenvalues will be real (0 imaginary
part) or occur in conjugate pairs
v : (M, M) array
The normalized (unit "length") eigenvectors, such that the
column ``v[:,i]`` is the eigenvector corresponding to the
eigenvalue ``w[i]``.
'''
r = LinalgUtil.eigen(a.asarray())
#r = LinalgUtil.eigen_EJML(a.asarray())
w = NDArray(r[0])
v = NDArray(r[1])
return w, v
def inv(a):
'''
Compute the (multiplicative) inverse of a matrix.
:param a: (*array_like*) Input array.
:returns: Inverse matrix.
'''
r = LinalgUtil.inv(a.asarray())
return NDArray(r)
def lstsq(a, b):
'''
Compute least-squares solution to equation Ax = b.
Compute a vector x such that the 2-norm |b - A x| is minimized.
Parameters
----------
a : (M, N) array
Left hand side matrix (2-D array).
b : (M,) array
Right hand side vector.
Returns
-------
x : (N,) array
Least-squares solution. Return shape matches shape of b.
residues : (0,) or () or (K,) ndarray
Sums of residues, squared 2-norm for each column in b - a x.
'''
r = StatsUtil.multipleLineRegress_OLS(b.asarray(), a.asarray(), True)
return NDArray(r[0]), NDArray(r[1])
def det(a):
'''
Compute the determinant of an array.
arameters
----------
a : (..., M, M) array_like
Input array to compute determinants for.
Returns
-------
det : (...) array_like
Determinant of `a`.
'''
r = LinalgUtil.determinantOfMatrix(a.asarray())
return r