# coding=utf-8 #----------------------------------------------------- # Author: Yaqiang Wang # Date: 2019-9-4 # Purpose: MeteoInfoLab axes3dgl module - using JOGL # Note: Jython #----------------------------------------------------- from org.meteoinfo.chart.graphic import GraphicFactory from org.meteoinfo.chart import AspectType from org.meteoinfo.geometry.legend import BreakTypes, BarBreak from org.meteoinfo.geo.legend import LegendManage from org.meteoinfo.geo.layer import LayerTypes from org.meteoinfo.geometry.shape import ShapeTypes from org.meteoinfo.geometry.graphic import Graphic, GraphicCollection from org.meteoinfo.chart.jogl import GLPlot, GLForm, JOGLUtil, EarthGLPlot, MapGLPlot from org.meteoinfo.math.interpolate import InterpolationMethod from org.meteoinfo.image import ImageUtil from org.meteoinfo.common import Extent3D from javax.swing import WindowConstants from java.awt import Font, Color from java.awt.image import BufferedImage import os import numbers import warnings import plotutil import colors from ._axes3d import Axes3D from mipylib.numeric.core import NDArray, DimArray import mipylib.numeric as np from mipylib import migl from mipylib.geolib import migeo __all__ = ['Axes3DGL','MapAxes3D','EarthAxes3D'] class Axes3DGL(Axes3D): def __init__(self, *args, **kwargs): """ Axes 3d with openGL support. :param position: (*list of float*) Axes position specified by *position=* [left, bottom, width height] in normalized (0, 1) units. Default is [0.13, 0.11, 0.775, 0.815]. :param rotation: (*float*) Axes rotation angle around Z axis. :param elevation: (*float*) Axes elevation angle with Z axis. :param antialias: (*bool*) Antialias or not. Default is `None`. """ axes = kwargs.pop('axes', None) self._set_plot(axes) figure = kwargs.pop('figure', None) self.figure = figure if len(args) > 0: position = args[0] else: position = kwargs.pop('position', None) outerposition = kwargs.pop('outerposition', None) if position is None: #position = [0.13, 0.11, 0.71, 0.815] position = [0, 0, 1, 1] self.active_outerposition(True) else: self.active_outerposition(False) self.set_position(position) if not outerposition is None: self.set_outerposition(outerposition) self.active_outerposition(True) bgcolor = kwargs.pop('bgcolor', None) if not bgcolor is None: bgcolor = plotutil.getcolor(bgcolor) self._axes.setBackground(bgcolor) fgcolor = kwargs.pop('fgcolor', None) if not fgcolor is None: fgcolor = plotutil.getcolor(fgcolor) self._axes.setForeground(fgcolor) units = kwargs.pop('units', None) if not units is None: self._axes.setUnits(units) tickfontname = kwargs.pop('tickfontname', 'Arial') tickfontsize = kwargs.pop('tickfontsize', 14) tickbold = kwargs.pop('tickbold', False) if tickbold: font = Font(tickfontname, Font.BOLD, tickfontsize) else: font = Font(tickfontname, Font.PLAIN, tickfontsize) self._axes.setAxisTickFont(font) orthographic = kwargs.pop('orthographic', None) if not orthographic is None: self._axes.setOrthographic(orthographic) rotation = kwargs.pop('rotation', None) if not rotation is None: self._axes.setAngleY(rotation) elevation = kwargs.pop('elevation', None) if not elevation is None: self._axes.setAngleX(elevation) antialias = kwargs.pop('antialias', None) if not antialias is None: self._axes.setAntialias(antialias) clip_plane = kwargs.pop('clip_plane', None) if not clip_plane is None: self._axes.setClipPlane(clip_plane) axes_zoom = kwargs.pop('axes_zoom', None) if not axes_zoom is None: self._axes.setAxesZoom(axes_zoom) aspect = kwargs.pop('aspect', None) if not aspect is None: self._axes.setAspectType(AspectType.valueOf(aspect.upper())) distance = kwargs.pop('distance', None) if not distance is None: self._axes.setDistance(distance) axis = kwargs.pop('axis', True) if not axis: self._axes.setDrawBase(False) self._axes.setBoxed(False) self._axes.setDisplayXY(False) self._axes.setDisplayZ(False) def _set_plot(self, plot): """ Set plot. :param plot: (*Axes3D*) Plot. """ if plot is None: #self._axes = Plot3DGL() self._axes = GLPlot() else: self._axes = plot @property def axestype(self): return '3d' def get_rotation(self): """ Get rotation angle. :returns: Rotation angle. """ return self._axes.getAngleY() def set_rotation(self, rotation): """ Set rotation angle. :param rotation: (*float*) Rotation angle. """ self._axes.setAngleY(rotation) def get_elevation(self): """ Get elevation angle. :returns: Elevation angle. """ return self._axes.getAngleX() def set_elevation(self, elevation): """ Set elevation angle. :param elevation: (*float*) Elevation angle. """ self._axes.setAngleX(elevation) def get_head(self): """ Get head angle. :return: (*float*) Head angle """ return self._axes.getHeadAngle() def set_head(self, head): """ Set head angle. :param head: (*float*) Head angle """ self._axes.setHeadAngle(head) def get_pitch(self): """ Get pitch angle. :return: (*float*) Pitch angle """ return self._axes.getPitchAngle() def set_pitch(self, pitch): """ Set pitch angle. :param pitch: (*float*) Pitch angle. """ self._axes.setPitchAngle(pitch) def get_zscale(self): """ Get z axis scale. :return: (*float*) Z axis scale. """ return self._axes.getZScale() def set_zscale(self, zscale): """ Set z axis scale. :param zscale: (*float*) Z axis scale. """ self._axes.setZScale(zscale) def set_background(self, color): """ Set background color. :param color: (*color*) Background color. """ color = plotutil.getcolor(color) self._axes.setBackground(color) def get_antialias(self): """ Get antialias :return: (*bool*) Antialias or not. """ return self._axes.isAntialias() def set_antialias(self, antialias): """ Set antialias. :param antialias: (*bool*) Antialias or not. """ self._axes.setAntialias(antialias) def get_orthographic(self): """ Get orthographic. :return: (*bool*) Orthographic or not. """ return self._axes.isOrthographic() def set_orthographic(self, orthographic): """ Set orthographic. :param orthographic: (*bool*) Orthographic or not. """ self._axes.setOrthographic(orthographic) def get_distance(self): """ Get camera distance. :return: (*float*) Camera distance. """ return self._axes.getDistance() def set_distance(self, dis): """ Set camera distance. :param dis: (*float*) Camera distance. """ self._axes.setDistance(dis) def set_lighting(self, enable=True, **kwargs): """ Set lighting. :param enable: (*boolean*) Set lighting enable or not. :param position: (*list of float*) Lighting position. Default is [0,0,1,0]. :param ambient: (*list of float*) Ambient light. Default is [0.2,0.2,0.2,1]. :param diffuse: (*list of float*) Diffuse light. Default is [1,1,1,1]. :param specular: (*list of float*) Specular light. Default is [1,1,1,1]. :param mat_ambient: (*list of float*) Material ambient light. Default is [0.2,0.2,0.2,1]. :param mat_diffuse: (*list of float*) Material diffuse light. Default is [0.8,0.8,0.8,1]. :param mat_specular: (*list of float*) Material specular light. Default is [0,0,0,1]. :param mat_emission: (*list of float*) Material emission light. Default is [0,0,0,1]. :param mat_shininess: (*float*) Material shininess (0 - 128). Default is 50. """ lighting = self._axes.getLighting() lighting.setEnable(enable) position = kwargs.pop('position', None) if not position is None: lighting.setPosition(position) ambient = kwargs.pop('ambient', None) if not ambient is None: lighting.setAmbient(ambient) diffuse = kwargs.pop('diffuse', None) if not diffuse is None: lighting.setDiffuse(diffuse) specular = kwargs.pop('specular', None) if not specular is None: lighting.setSpecular(specular) mat_ambient = kwargs.pop('mat_ambient', None) if not mat_ambient is None: lighting.setMaterialAmbient(mat_ambient) mat_diffuse = kwargs.pop('mat_diffuse', None) if not mat_diffuse is None: lighting.setMaterailDiffuse(mat_diffuse) mat_specular = kwargs.pop('mat_specular', None) if not mat_specular is None: lighting.setMaterialSpecular(mat_specular) mat_emission = kwargs.pop('mat_emission', None) if not mat_emission is None: lighting.setMaterialEmission(mat_emission) mat_shininess = kwargs.pop('mat_shininess', None) if not mat_shininess is None: lighting.setMaterialShininess(mat_shininess) def set_material(self, mvalues): """ Set reflectance properties of surfaces and patches. :param mvalues: (*list*) Material value list. Sets the ambient/diffuse/specular strength, specular exponent, and specular color reflectance of the objects. """ lighting = self._axes.getLighting() lighting.setMat_Ambient(mvalues[0]) if len(mvalues) > 1: lighting.setMat_Diffuse(mvalues[1]) if len(mvalues) > 2: lighting.setMat_Specular(mvalues[2]) if len(mvalues) > 3: lighting.setMat_Shininess(mvalues[3]) if len(mvalues) > 4: lighting.setMat_Emission(mvalues[4]) def add_zaxis(self, x, y, left=True): """ Add a z axis. :param x: (*float*) X coordinate of the z axis. :param y: (*float*) Y coordinate of the z axis. :param left: (*boolean*) Whether left tick. Default is True. """ self._axes.addZAxis(x, y, left) def bar(self, *args, **kwargs): """ Make a 3D bar plot of x, y and z, where x, y and z are sequence like objects of the same lengths. :param x: (*array_like*) Input x data. :param y: (*array_like*) Input y data. :param z: (*array_like*) Input z data. :param width: (*float*) Bar width. :param cylinder: (*bool*) Is cylinder bar or rectangle bar. :param bottom: (*bool*) Color of the points. Or z values. :param facecolor: (*Color*) Optional, the color of the bar faces. :param edgecolor: (*Color*) Optional, the color of the bar edge. Default is black color. Edge line will not be plotted if ``edgecolor`` is ``None``. :param linewidth: (*int*) Optional, width of bar edge. :param label: (*string*) Label of the bar series. :param hatch: (*string*) Hatch string. :param hatchsize: (*int*) Hatch size. Default is None (8). :param bgcolor: (*Color*) Background color, only valid with hatch. :param barswidth: (*float*) Bars width (0 - 1), only used for automatic bar with plot (only one argument without ``width`` argument). Default is 0.8. :returns: Bar 3D graphics. """ #Add data series label = kwargs.pop('label', 'S_0') if len(args) == 1: z = np.asarray(args[0]) if z.ndim == 1: nx, = z.shape y = np.array([0] * nx) x = np.arange(nx) else: ny, nx = z.shape x = np.arange(nx) y = np.arange(ny) x, y = np.meshgrid(x, y) elif len(args) == 2: x = np.asarray(args[0]) z = np.asarray(args[1]) nx, = x.shape y = np.array([0] * nx) else: x = np.asarray(args[0]) y = np.asarray(args[1]) z = np.asarray(args[2]) xdata = x._array ydata = y._array zdata = z._array autowidth = False width = kwargs.pop('width', 0.8) width = np.asarray(width) bottom = kwargs.pop('bottom', None) if not bottom is None: bottom = plotutil.getplotdata(bottom) cylinder = kwargs.pop('cylinder', False) #Set plot data styles fcobj = kwargs.pop('color', None) if fcobj is None: fcobj = kwargs.pop('facecolor', 'b') if isinstance(fcobj, (tuple, list)): colors = plotutil.getcolors(fcobj) else: color = plotutil.getcolor(fcobj) colors = [color] ecobj = kwargs.pop('edgecolor', 'k') edgecolor = plotutil.getcolor(ecobj) linewidth = kwargs.pop('linewidth', 1.0) hatch = kwargs.pop('hatch', None) hatch = plotutil.gethatch(hatch) hatchsize = kwargs.pop('hatchsize', None) bgcolor = kwargs.pop('bgcolor', None) bgcolor = plotutil.getcolor(bgcolor) ecolor = kwargs.pop('ecolor', 'k') ecolor = plotutil.getcolor(ecolor) barbreaks = [] for color in colors: lb = BarBreak() lb.setCaption(label) lb.setColor(color) if edgecolor is None: lb.setDrawOutline(False) else: lb.setOutlineColor(edgecolor) lb.setOutlineSize(linewidth) if not hatch is None: lb.setStyle(hatch) if not bgcolor is None: lb.setBackColor(bgcolor) if not hatchsize is None: lb.setStyleSize(hatchsize) lb.setErrorColor(ecolor) barbreaks.append(lb) #Create bar graphics if isinstance(width, NDArray): width = width.asarray() if cylinder: graphics = GraphicFactory.createCylinderBars3D(xdata, ydata, zdata, autowidth, width, bottom, barbreaks) else: graphics = GraphicFactory.createBars3D(xdata, ydata, zdata, autowidth, width, bottom, barbreaks) self.add_graphic(graphics) return barbreaks def streamplot(self, *args, **kwargs): """ Plot stream lines in 3D axes. :param x: (*array_like*) X coordinate array. :param y: (*array_like*) Y coordinate array. :param z: (*array_like*) Z coordinate array. :param u: (*array_like*) U component of the arrow vectors (wind field). :param v: (*array_like*) V component of the arrow vectors (wind field). :param w: (*array_like*) W component of the arrow vectors (wind field). :param density: (*int*) Streamline density. Default is 4. :return: Streamlines """ ls = kwargs.pop('symbolspec', None) cmap = plotutil.getcolormap(**kwargs) density = kwargs.pop('density', 4) iscolor = False cdata = None if len(args) < 6: u = args[0] v = args[1] w = args[2] u = np.asarray(u) nz, ny, nx = u.shape x = np.arange(nx) y = np.arange(ny) z = np.arange(nz) args = args[3:] else: x = args[0] y = args[1] z = args[2] u = args[3] v = args[4] w = args[5] args = args[6:] if len(args) > 0: cdata = args[0] iscolor = True args = args[1:] x = plotutil.getplotdata(x) y = plotutil.getplotdata(y) z = plotutil.getplotdata(z) u = plotutil.getplotdata(u) v = plotutil.getplotdata(v) w = plotutil.getplotdata(w) if ls is None: if iscolor: if len(args) > 0: cn = args[0] ls = LegendManage.createLegendScheme(cdata.min(), cdata.max(), cn, cmap) else: levs = kwargs.pop('levs', None) if levs is None: ls = LegendManage.createLegendScheme(cdata.min(), cdata.max(), cmap) else: if isinstance(levs, NDArray): levs = levs.tolist() ls = LegendManage.createLegendScheme(cdata.min(), cdata.max(), levs, cmap) else: if cmap.getColorCount() == 1: c = cmap.getColor(0) else: c = Color.black ls = LegendManage.createSingleSymbolLegendScheme(ShapeTypes.POLYLINE, c, 1) ls = plotutil.setlegendscheme_line(ls, **kwargs) if not kwargs.has_key('headwidth'): kwargs['headwidth'] = 1 if not kwargs.has_key('headlength'): kwargs['headlength'] = 2.5 * kwargs['headwidth'] for i in range(ls.getBreakNum()): lb = plotutil.line2stream(ls.getLegendBreak(i), **kwargs) ls.setLegendBreak(i, lb) if not cdata is None: cdata = plotutil.getplotdata(cdata) min_points = kwargs.pop('min_points', 3) nloop = kwargs.pop('nloop', 1000) start_x = kwargs.pop('start_x', None) start_y = kwargs.pop('start_y', None) start_z = kwargs.pop('start_z', None) if start_x is None or start_y is None or start_z is None: graphics = GraphicFactory.createStreamlines3D(x, y, z, u, v, w, cdata, density, ls, min_points, nloop) else: start_x = np.asarray(start_x).flatten() start_y = np.asarray(start_y).flatten() start_z = np.asarray(start_z).flatten() graphics = GraphicFactory.createStreamlines3D(x, y, z, u, v, w, cdata, density, ls, min_points, nloop, start_x._array, start_y._array, start_z._array) lighting = kwargs.pop('lighting', None) if not lighting is None: graphics.setUsingLight(lighting) #Pipe pipe = kwargs.pop('pipe', False) if pipe: radius = kwargs.pop('radius', 0.02) steps = kwargs.pop('steps', 48) graphics = GraphicFactory.lineString3DToPipe(graphics, radius, steps) self.add_graphic(graphics) return graphics def streamslice(self, *args, **kwargs): """ Plot stream lines slice in 3D axes. :param x: (*array_like*) X coordinate array. :param y: (*array_like*) Y coordinate array. :param z: (*array_like*) Z coordinate array. :param u: (*array_like*) U component of the arrow vectors (wind field). :param v: (*array_like*) V component of the arrow vectors (wind field). :param w: (*array_like*) W component of the arrow vectors (wind field). :param xslice: (*list*) X slice locations. :param yslice: (*list*) Y slice locations. :param zslice: (*list*) Z slice locations. :param density: (*int*) Streamline density. Default is 4. :return: Streamline slices """ ls = kwargs.pop('symbolspec', None) cmap = plotutil.getcolormap(**kwargs) density = kwargs.pop('density', 4) iscolor = False cdata = None if len(args) < 6: u = args[0] v = args[1] w = args[2] u = np.asarray(u) nz, ny, nx = u.shape x = np.arange(nx) y = np.arange(ny) z = np.arange(nz) args = args[3:] else: x = args[0] y = args[1] z = args[2] u = args[3] v = args[4] w = args[5] args = args[6:] if len(args) > 0: cdata = args[0] iscolor = True args = args[1:] x = plotutil.getplotdata(x) y = plotutil.getplotdata(y) z = plotutil.getplotdata(z) u = plotutil.getplotdata(u) v = plotutil.getplotdata(v) w = plotutil.getplotdata(w) if ls is None: if iscolor: if len(args) > 0: cn = args[0] ls = LegendManage.createLegendScheme(cdata.min(), cdata.max(), cn, cmap) else: levs = kwargs.pop('levs', None) if levs is None: ls = LegendManage.createLegendScheme(cdata.min(), cdata.max(), cmap) else: if isinstance(levs, NDArray): levs = levs.tolist() ls = LegendManage.createLegendScheme(cdata.min(), cdata.max(), levs, cmap) else: if cmap.getColorCount() == 1: c = cmap.getColor(0) else: c = Color.black ls = LegendManage.createSingleSymbolLegendScheme(ShapeTypes.POLYLINE, c, 1) ls = plotutil.setlegendscheme_line(ls, **kwargs) if not kwargs.has_key('headwidth'): kwargs['headwidth'] = 1 if not kwargs.has_key('headlength'): kwargs['headlength'] = 2.5 for i in range(ls.getBreakNum()): lb = plotutil.line2stream(ls.getLegendBreak(i), **kwargs) ls.setLegendBreak(i, lb) if not cdata is None: cdata = plotutil.getplotdata(cdata) min_points = kwargs.pop('min_points', 3) zslice_index = kwargs.pop('zslice_index', None) if zslice_index is None: xslice = kwargs.pop('xslice', []) if isinstance(xslice, numbers.Number): xslice = [xslice] yslice = kwargs.pop('yslice', []) if isinstance(yslice, numbers.Number): yslice = [yslice] zslice = kwargs.pop('zslice', []) if isinstance(zslice, numbers.Number): zslice = [zslice] graphics = GraphicFactory.streamSlice(x, y, z, u, v, w, cdata, xslice, yslice, zslice, density, ls) else: if isinstance(zslice_index, int): zslice_index = [zslice_index] graphics = GraphicFactory.streamSlice(x, y, z, u, v, w, cdata, zslice_index, density, ls) xyslice = kwargs.pop('xyslice', None) if not xyslice is None: method = kwargs.pop('method', 'nearest') method = InterpolationMethod.valueOf(method.upper()) gg = GraphicFactory.streamSlice(x, y, z, u, v, w, cdata, xyslice, method, density, ls) graphics.append(gg) lighting = kwargs.pop('lighting', None) if not lighting is None: for gg in graphics: gg.setUsingLight(lighting) visible = kwargs.pop('visible', True) if visible: for gg in graphics: self.add_graphic(gg) return graphics def geoshow(self, layer, **kwargs): """ Plot a layer in 3D axes. :param layer: (*MILayer*) The layer to be plotted. :returns: Graphics. """ ls = kwargs.pop('symbolspec', None) offset = kwargs.pop('offset', 0) xshift = kwargs.pop('xshift', 0) if isinstance(layer, basestring): fn = layer encoding = kwargs.pop('encoding', None) layer = migeo.georead(fn, encoding) layer = layer._layer if layer.getLayerType() == LayerTypes.VECTOR_LAYER: if ls is None: ls = layer.getLegendScheme() if layer.getLegendScheme().getBreakNum() == 1: lb = layer.getLegendScheme().getLegendBreaks().get(0) btype = lb.getBreakType() geometry = 'point' if btype == BreakTypes.POLYLINE_BREAK: geometry = 'line' elif btype == BreakTypes.POLYGON_BREAK: geometry = 'polygon' if not kwargs.has_key('facecolor'): kwargs['facecolor'] = None if not kwargs.has_key('edgecolor'): kwargs['edgecolor'] = 'k' lb, isunique = plotutil.getlegendbreak(geometry, **kwargs) ls.getLegendBreaks().set(0, lb) else: plotutil.setlegendscheme(ls, **kwargs) layer.setLegendScheme(ls) graphics = GraphicFactory.createGraphicsFromLayer(layer, offset, xshift) else: #interpolation = kwargs.pop('interpolation', None) #graphics = GraphicFactory.createTexture(layer, offset, xshift, interpolation) nlat = kwargs.pop('nlat', 180) nlon = kwargs.pop('nlon', 360) if self._axes.getProjInfo() is None: graphics = GraphicFactory.geoSurface(layer, offset, xshift, nlon, nlat) else: limits = kwargs.pop('limits', None) if limits is None: graphics = GraphicFactory.geoSurface(layer, offset, xshift, nlon, nlat, self._axes.getProjInfo()) else: graphics = GraphicFactory.geoSurface(layer, offset, xshift, nlon, nlat, self._axes.getProjInfo(), limits) lighting = kwargs.pop('lighting', None) if not lighting is None: graphics.setUsingLight(lighting) visible = kwargs.pop('visible', True) if visible: projection = kwargs.pop('projection', layer.getProjInfo()) self.add_graphic(graphics, projection) return graphics def plot_layer(self, layer, **kwargs): """ Plot a layer in 3D axes. :param layer: (*MILayer*) The layer to be plotted. :returns: Graphics. """ return self.geoshow(layer, **kwargs) def slice(self, *args, **kwargs): """ Volume slice planes :param x: (*array_like*) Optional. X coordinate array. :param y: (*array_like*) Optional. Y coordinate array. :param z: (*array_like*) Optional. Z coordinate array. :param data: (*array_like*) 3D data array. :param xslice: (*list*) X slice locations. :param yslice: (*list*) Y slice locations. :param zslice: (*list*) Z slice locations. :param cmap: (*string*) Color map string. :return: Slice plane graphics. """ if len(args) <= 3: x = args[0].dimvalue(2) y = args[0].dimvalue(1) z = args[0].dimvalue(0) data = args[0] args = args[1:] else: x = args[0] y = args[1] z = args[2] data = args[3] args = args[4:] if x.ndim == 3: x = x[0,0] if y.ndim == 3: y = y[0,:,0] if z.ndim == 3: z = z[:,0,0] cmap = plotutil.getcolormap(**kwargs) if len(args) > 0: level_arg = args[0] if isinstance(level_arg, int): cn = level_arg ls = LegendManage.createLegendScheme(data.min(), data.max(), cn, cmap) else: if isinstance(level_arg, NDArray): level_arg = level_arg.aslist() ls = LegendManage.createLegendScheme(data.min(), data.max(), level_arg, cmap) else: ls = LegendManage.createLegendScheme(data.min(), data.max(), cmap) ls = ls.convertTo(ShapeTypes.POLYGON) facecolor = kwargs.pop('facecolor', None) face_interp = None if not facecolor is None: face_interp = (facecolor == 'interp') if not face_interp: if not facecolor in ['flat','texturemap','none']: facecolor = plotutil.getcolor(facecolor) ls = LegendManage.createSingleSymbolLegendScheme(ShapeTypes.POLYGON, facecolor, 1) plotutil.setlegendscheme(ls, **kwargs) xslice = kwargs.pop('xslice', []) if isinstance(xslice, numbers.Number): xslice = [xslice] yslice = kwargs.pop('yslice', []) if isinstance(yslice, numbers.Number): yslice = [yslice] zslice = kwargs.pop('zslice', []) if isinstance(zslice, numbers.Number): zslice = [zslice] if isinstance(xslice, NDArray): graphics = GraphicFactory.slice(data.asarray(), x.asarray(), y.asarray(), z.asarray(), xslice._array, yslice._array, zslice._array, ls) else: graphics = GraphicFactory.slice(data.asarray(), x.asarray(), y.asarray(), z.asarray(), xslice, \ yslice, zslice, ls) xyslice = kwargs.pop('xyslice', None) if not xyslice is None: method = kwargs.pop('method', 'nearest') method = InterpolationMethod.valueOf(method.upper()) gg = GraphicFactory.slice(data.asarray(), x.asarray(), y.asarray(), z.asarray(), xyslice, ls, method) graphics.append(gg) if face_interp: for gg in graphics: gg.setFaceInterp(face_interp) lighting = kwargs.pop('lighting', None) if not lighting is None: for gg in graphics: gg.setUsingLight(lighting) visible = kwargs.pop('visible', True) if visible: for gg in graphics: self.add_graphic(gg) return graphics def plot_slice(self, *args, **kwargs): """ Volume slice planes :param x: (*array_like*) Optional. X coordinate array. :param y: (*array_like*) Optional. Y coordinate array. :param z: (*array_like*) Optional. Z coordinate array. :param data: (*array_like*) 3D data array. :param xslice: (*list*) X slice locations. :param yslice: (*list*) Y slice locations. :param zslice: (*list*) Z slice locations. :param cmap: (*string*) Color map string. :return: """ return self.slice(*args, **kwargs) def contourslice(self, *args, **kwargs): """ Volume slice contours :param x: (*array_like*) Optional. X coordinate array. :param y: (*array_like*) Optional. Y coordinate array. :param z: (*array_like*) Optional. Z coordinate array. :param data: (*array_like*) 3D data array. :param xslice: (*list*) X slice locations. :param yslice: (*list*) Y slice locations. :param zslice: (*list*) Z slice locations. :param cmap: (*string*) Color map string. :param smooth: (*bool*) Smooth contour lines or not. :return: Contour slice graphics """ if len(args) <= 3: x = args[0].dimvalue(2) y = args[0].dimvalue(1) z = args[0].dimvalue(0) data = args[0] args = args[1:] else: x = args[0] y = args[1] z = args[2] data = args[3] args = args[4:] if x.ndim == 3: x = x[0,0] if y.ndim == 3: y = y[0,:,0] if z.ndim == 3: z = z[:,0,0] cmap = plotutil.getcolormap(**kwargs) if len(args) > 0: level_arg = args[0] if isinstance(level_arg, int): cn = level_arg ls = LegendManage.createLegendScheme(data.min(), data.max(), cn, cmap) else: if isinstance(level_arg, NDArray): level_arg = level_arg.aslist() ls = LegendManage.createLegendScheme(data.min(), data.max(), level_arg, cmap) else: ls = LegendManage.createLegendScheme(data.min(), data.max(), cmap) ls = ls.convertTo(ShapeTypes.POLYLINE) plotutil.setlegendscheme(ls, **kwargs) xslice = kwargs.pop('xslice', []) if isinstance(xslice, numbers.Number): xslice = [xslice] yslice = kwargs.pop('yslice', []) if isinstance(yslice, numbers.Number): yslice = [yslice] zslice = kwargs.pop('zslice', []) if isinstance(zslice, numbers.Number): zslice = [zslice] smooth = kwargs.pop('smooth', True) graphics = GraphicFactory.contourSlice(data.asarray(), x.asarray(), y.asarray(), z.asarray(), xslice, \ yslice, zslice, ls, smooth) xyslice = kwargs.pop('xyslice', None) if not xyslice is None: method = kwargs.pop('method', 'nearest') method = InterpolationMethod.valueOf(method.upper()) gg = GraphicFactory.contourSlice(data.asarray(), x.asarray(), y.asarray(), z.asarray(), xyslice, method, ls, smooth) if not gg is None: graphics.append(gg) lighting = kwargs.pop('lighting', None) if not lighting is None: for gg in graphics: gg.setUsingLight(lighting) visible = kwargs.pop('visible', True) if visible: for gg in graphics: self.add_graphic(gg) return graphics def contourfslice(self, *args, **kwargs): """ Volume slice contour polygons :param x: (*array_like*) Optional. X coordinate array. :param y: (*array_like*) Optional. Y coordinate array. :param z: (*array_like*) Optional. Z coordinate array. :param data: (*array_like*) 3D data array. :param xslice: (*list*) X slice locations. :param yslice: (*list*) Y slice locations. :param zslice: (*list*) Z slice locations. :param cmap: (*string*) Color map string. :param smooth: (*bool*) Smooth contour lines or not. :return: Contour polygon slice graphics """ if len(args) <= 3: x = args[0].dimvalue(2) y = args[0].dimvalue(1) z = args[0].dimvalue(0) data = args[0] args = args[1:] else: x = args[0] y = args[1] z = args[2] data = args[3] args = args[4:] if x.ndim == 3: x = x[0,0] if y.ndim == 3: y = y[0,:,0] if z.ndim == 3: z = z[:,0,0] cmap = plotutil.getcolormap(**kwargs) if len(args) > 0: level_arg = args[0] if isinstance(level_arg, int): cn = level_arg ls = LegendManage.createLegendScheme(data.min(), data.max(), cn, cmap) else: if isinstance(level_arg, NDArray): level_arg = level_arg.aslist() ls = LegendManage.createLegendScheme(data.min(), data.max(), level_arg, cmap) else: ls = LegendManage.createLegendScheme(data.min(), data.max(), cmap) ls = ls.convertTo(ShapeTypes.POLYGON) plotutil.setlegendscheme(ls, **kwargs) xslice = kwargs.pop('xslice', []) if isinstance(xslice, numbers.Number): xslice = [xslice] yslice = kwargs.pop('yslice', []) if isinstance(yslice, numbers.Number): yslice = [yslice] zslice = kwargs.pop('zslice', []) if isinstance(zslice, numbers.Number): zslice = [zslice] smooth = kwargs.pop('smooth', True) graphics = GraphicFactory.contourfSlice(data.asarray(), x.asarray(), y.asarray(), z.asarray(), xslice, \ yslice, zslice, ls, smooth) xyslice = kwargs.pop('xyslice', None) if not xyslice is None: method = kwargs.pop('method', 'nearest') method = InterpolationMethod.valueOf(method.upper()) gg = GraphicFactory.contourfSlice(data.asarray(), x.asarray(), y.asarray(), z.asarray(), xyslice, method, ls, smooth) if not gg is None: graphics.append(gg) lighting = kwargs.pop('lighting', None) if not lighting is None: for gg in graphics: gg.setUsingLight(lighting) visible = kwargs.pop('visible', True) if visible: for gg in graphics: self.add_graphic(gg) return graphics def mesh(self, *args, **kwargs): """ creates a three-dimensional surface mesh plot :param x: (*array_like*) Optional. X coordinate array. :param y: (*array_like*) Optional. Y coordinate array. :param z: (*array_like*) 2-D z value array. :param cmap: (*string*) Color map string. :returns: Legend """ if len(args) <= 2: z = args[0] if isinstance(z, DimArray): x = args[0].dimvalue(1) y = args[0].dimvalue(0) else: ny, nx = z.shape x = np.arange(nx) y = np.arange(ny) x, y = np.meshgrid(x, y) args = args[1:] else: x = args[0] y = args[1] z = args[2] args = args[3:] if kwargs.has_key('colors'): cn = len(kwargs['colors']) else: cn = None cmap = plotutil.getcolormap(**kwargs) if len(args) > 0: level_arg = args[0] if isinstance(level_arg, int): cn = level_arg ls = LegendManage.createLegendScheme(z.min(), z.max(), cn, cmap) else: if isinstance(level_arg, NDArray): level_arg = level_arg.aslist() ls = LegendManage.createLegendScheme(z.min(), z.max(), level_arg, cmap) else: if cn is None: ls = LegendManage.createLegendScheme(z.min(), z.max(), cmap) else: ls = LegendManage.createLegendScheme(z.min(), z.max(), cn, cmap) #ls = ls.convertTo(ShapeTypes.POLYGON, True) ls = ls.convertTo(ShapeTypes.POLYGON) face_interp = None if kwargs.has_key('facecolor'): facecolor = kwargs.pop('facecolor', None) face_interp = (facecolor == 'interp') if not face_interp: if not facecolor in ['flat','texturemap','none']: kwargs['facecolor'] = facecolor else: kwargs['facecolor'] = None edgecolor = kwargs.pop('edgecolor', None) edge_interp = None if not edgecolor is None: edge_interp = (edgecolor == 'interp') if not edge_interp: if not edgecolor in ['flat','texturemap','none']: kwargs['edgecolor'] = edgecolor plotutil.setlegendscheme(ls, **kwargs) graphics = GraphicFactory.surface(x.asarray(), y.asarray(), z.asarray(), ls) graphics.setMesh(True) if face_interp: graphics.setFaceInterp(face_interp) if edge_interp: graphics.setEdgeInterp(edge_interp) visible = kwargs.pop('visible', True) if visible: self.add_graphic(graphics) return graphics def surf(self, *args, **kwargs): """ creates a three-dimensional surface plot :param x: (*array_like*) Optional. X coordinate array. :param y: (*array_like*) Optional. Y coordinate array. :param z: (*array_like*) 2-D z value array. :param cmap: (*string*) Color map string. :param lighting: (*bool*) Using light or not. :returns: 3D surface graphic """ if len(args) <= 2: z = args[0] if isinstance(z, DimArray): x = args[0].dimvalue(1) y = args[0].dimvalue(0) else: ny, nx = z.shape x = np.arange(nx) y = np.arange(ny) x, y = np.meshgrid(x, y) args = args[1:] else: x = args[0] y = args[1] z = args[2] args = args[3:] if kwargs.has_key('colors'): cn = len(kwargs['colors']) else: cn = None cmap = plotutil.getcolormap(**kwargs) level_arg = None C = None min = z.min() max = z.max() if len(args) > 0: if isinstance(args[0], NDArray): if args[0].shape == z.shape: C = args[0] min = C.min() max = C.max() if len(args) > 1: level_arg = args[1] elif args[0].ndim == 3: C = args[0] else: level_arg = args[0] else: level_arg = args[0] facecolor = kwargs.pop('facecolor', None) if facecolor == 'texturemap': cdata = kwargs.pop('cdata') if isinstance(cdata, NDArray) and cdata.ndim == 2: min = cdata.min() max = cdata.max() if not level_arg is None: if isinstance(level_arg, int): cn = level_arg ls = LegendManage.createLegendScheme(min, max, cn, cmap) else: if isinstance(level_arg, NDArray): level_arg = level_arg.aslist() ls = LegendManage.createLegendScheme(min, max, level_arg, cmap) else: if cn is None: ls = LegendManage.createLegendScheme(min, max, cmap) else: ls = LegendManage.createLegendScheme(min, max, cn, cmap) ls = ls.convertTo(ShapeTypes.POLYGON) face_interp = False image = None if not facecolor is None: face_interp = (facecolor == 'interp') if not face_interp: if facecolor == 'texturemap': if isinstance(cdata, NDArray): if cdata.ndim == 3: image = ImageUtil.createImage(cdata._array) else: image = GraphicFactory.createImage(cdata._array, ls) elif isinstance(cdata, BufferedImage): image = cdata elif isinstance(cdata, GraphicCollection): image = cdata.getGraphicN(0).getShape().getImage() else: image = cdata.getShape().getImage() elif not facecolor in ['flat','none']: facecolor = plotutil.getcolor(facecolor) ls = LegendManage.createSingleSymbolLegendScheme(ShapeTypes.POLYGON, facecolor, 1) face_interp = True plotutil.setlegendscheme(ls, **kwargs) if C is None: graphics = GraphicFactory.surface(x.asarray(), y.asarray(), z.asarray(), ls) else: graphics = GraphicFactory.surface(x.asarray(), y.asarray(), z.asarray(), C.asarray(), ls) if not image is None: graphics.setImage(image) if face_interp: graphics.setFaceInterp(face_interp) lighting = kwargs.pop('lighting', None) if not lighting is None: graphics.setUsingLight(lighting) visible = kwargs.pop('visible', True) if visible: self.add_graphic(graphics) return graphics def plot_surface(self, *args, **kwargs): """ creates a three-dimensional surface plot :param x: (*array_like*) Optional. X coordinate array. :param y: (*array_like*) Optional. Y coordinate array. :param z: (*array_like*) 2-D z value array. :param cmap: (*string*) Color map string. :returns: Legend """ return self.surf(*args, **kwargs) def isosurface(self, *args, **kwargs): """ creates a three-dimensional isosurface plot :param x: (*array_like*) Optional. X coordinate array. :param y: (*array_like*) Optional. Y coordinate array. :param z: (*array_like*) Optional. Z coordinate array. :param data: (*array_like*) 3D data array. :param cmap: (*string*) Color map string. :param nthread: (*int*) Thread number. Default is 4. :returns: 3D Mesh graphic """ if len(args) <= 3: x = args[0].dimvalue(2) y = args[0].dimvalue(1) z = args[0].dimvalue(0) data = args[0] isovalue = args[1] args = args[2:] else: x = args[0] y = args[1] z = args[2] if x.ndim == 3: x = x[0,0] if y.ndim == 3: y = y[0,:,0] if z.ndim == 3: z = z[:,0,0] data = args[3] isovalue = args[4] args = args[5:] cdata = None if len(args) > 0: if isinstance(args[0], NDArray) and args[0].shape == data.shape: cdata = args[0] args = args[1:] facecolor = kwargs.pop('facecolor', 'c') if not cdata is None: cmap = plotutil.getcolormap(**kwargs) if len(args) > 0: level_arg = args[0] if isinstance(level_arg, int): cn = level_arg ls = LegendManage.createLegendScheme(cdata.min(), cdata.max(), cn, cmap) else: if isinstance(level_arg, NDArray): level_arg = level_arg.aslist() ls = LegendManage.createLegendScheme(cdata.min(), cdata.max(), level_arg, cmap) else: ls = LegendManage.createLegendScheme(cdata.min(), cdata.max(), cmap) ls = ls.convertTo(ShapeTypes.POLYGON) else: facecolor = plotutil.getcolor(facecolor) ls = LegendManage.createSingleSymbolLegendScheme(ShapeTypes.POLYGON, facecolor, 1) if not kwargs.has_key('edgecolor'): kwargs['edgecolor'] = None plotutil.setlegendscheme(ls, **kwargs) nthread = kwargs.pop('nthread', 4) if nthread is None: graphics = GraphicFactory.isosurface(data.asarray(), x.asarray(), y.asarray(), z.asarray(), isovalue, ls) else: data = data.asarray().copyIfView() x = x.asarray().copyIfView() y = y.asarray().copyIfView() z = z.asarray().copyIfView() if cdata is None: graphics = GraphicFactory.isosurface(data, x, y, z, isovalue, ls, nthread) else: cdata = cdata.asarray().copyIfView() graphics = GraphicFactory.isosurface(data, x, y, z, isovalue, cdata, ls, nthread) visible = kwargs.pop('visible', True) if visible: self.add_graphic(graphics) return graphics def plot_isosurface(self, *args, **kwargs): """ creates a three-dimensional isosurface plot :param x: (*array_like*) Optional. X coordinate array. :param y: (*array_like*) Optional. Y coordinate array. :param z: (*array_like*) Optional. Z coordinate array. :param data: (*array_like*) 3D data array. :param cmap: (*string*) Color map string. :param nthread: (*int*) Thread number. Default is 4. :returns: 3D Mesh graphic """ return self.isosurface(*args, **kwargs) def fimplicit3(self, f, interval=[-5.,5.], mesh_density=35, *args, **kwargs): """ Plot the 3-D implicit function defined by f(x,y,z) = 0 over the default interval [-5, 5] for x, y, and z. :param f: (*function*) The 3-D implicit function defined by f(x,y,z). :param interval: (*list*) Optional. the plotting interval for x, y, and z. Default is [-5.,5.]. Length 2 or 6, 2 means x, y, and z use same interval. :param mesh_density: (*int*) Optional. Number of evaluation points per direction. Default is 35. :param cmap: (*string*) Color map string. :param nthread: (*int*) Thread number. Default is 4. :returns: 3D Mesh graphic """ if len(interval) == 2: interval = interval * 3 a = np.linspace(interval[0], interval[1], mesh_density) b = np.linspace(interval[2], interval[3], mesh_density) c = np.linspace(interval[4], interval[5], mesh_density) x, y, z = np.meshgrid(a, b, c) v = f(x, y, z) if not kwargs.has_key('edgecolor'): kwargs['edgecolor'] = 'k' if kwargs.has_key('facecolor'): return self.isosurface(a, b, c, v, 0, *args, **kwargs) else: return self.isosurface(a, b, c, v, 0, z, *args, **kwargs) def particles(self, *args, **kwargs): """ creates a three-dimensional particles plot :param x: (*array_like*) Optional. X coordinate array. :param y: (*array_like*) Optional. Y coordinate array. :param z: (*array_like*) Optional. Z coordinate array. :param data: (*array_like*) 3D data array. :param s: (*float*) Point size. :param cmap: (*string*) Color map string. :param vmin: (*float*) Minimum value for particle plotting. :param vmax: (*float*) Maximum value for particle plotting. :param alpha_min: (*float*) Minimum alpha value. Default is 0.1. :param alpha_max: (*float*) Maximum alpha value. Default is 0.6. :param density: (*int*) Particle density value. Default is 2. :returns: Legend """ if len(args) <= 3: x = args[0].dimvalue(2) y = args[0].dimvalue(1) z = args[0].dimvalue(0) data = args[0] args = args[1:] else: x = args[0] y = args[1] z = args[2] data = args[3] args = args[4:] cmap = plotutil.getcolormap(**kwargs) vmin = kwargs.pop('vmin', data.min()) vmax = kwargs.pop('vmax', data.max()) if vmin >= vmax: raise ValueError("Minimum value larger than maximum value") if len(args) > 0: level_arg = args[0] if isinstance(level_arg, int): cn = level_arg ls = LegendManage.createLegendScheme(vmin, vmax, cn, cmap) else: if isinstance(level_arg, NDArray): level_arg = level_arg.aslist() ls = LegendManage.createLegendScheme(vmin, vmax, level_arg, cmap) else: ls = LegendManage.createLegendScheme(vmin, vmax, cmap) plotutil.setlegendscheme(ls, **kwargs) alpha_min = kwargs.pop('alpha_min', 0.1) alpha_max = kwargs.pop('alpha_max', 0.6) density = kwargs.pop('density', 2) graphics = JOGLUtil.particles(data.asarray(), x.asarray(), y.asarray(), z.asarray(), ls, \ alpha_min, alpha_max, density) s = kwargs.pop('s', None) if s is None: s = kwargs.pop('size', None) if not s is None: graphics.setPointSize(s) visible = kwargs.pop('visible', True) if visible: self.add_graphic(graphics) return graphics def plot_particles(self, *args, **kwargs): """ creates a three-dimensional particles plot :param x: (*array_like*) Optional. X coordinate array. :param y: (*array_like*) Optional. Y coordinate array. :param z: (*array_like*) Optional. Z coordinate array. :param data: (*array_like*) 3D data array. :param s: (*float*) Point size. :param cmap: (*string*) Color map string. :param vmin: (*float*) Minimum value for particle plotting. :param vmax: (*float*) Maximum value for particle plotting. :param alpha_min: (*float*) Minimum alpha value. :param alpha_max: (*float*) Maximum alpha value. :param density: (*int*) Particle density value. :returns: Legend """ return self.particles(*args, **kwargs) def volumeplot(self, *args, **kwargs): """ creates a three-dimensional volume plot :param x: (*array_like*) Optional. X coordinate array. :param y: (*array_like*) Optional. Y coordinate array. :param z: (*array_like*) Optional. Z coordinate array. :param data: (*array_like*) 3D data array. :param cmap: (*string*) Color map string. :param vmin: (*float*) Minimum value for particle plotting. :param vmax: (*float*) Maximum value for particle plotting. :param ray_casting: (*str*) Ray casting algorithm ['basic' | 'max_value' | 'specular']. Default is 'max_value'. :param brightness: (*float*) Volume brightness. Default is 1. :param alpha_min: (*float*) Minimum alpha value. Default is 0. :param alpha_max: (*float*) Maximum alpha value. Default is 1. :param opacity_nodes: (*list of float*) Opacity nodes. Default is None. :param opacity_levels: (*list of float*) Opacity levels. Default is [0., 1.]. :returns: Volumeplot graphic """ if len(args) <= 3: data = args[0] if isinstance(data, DimArray): x = data.dimvalue(2) y = data.dimvalue(1) z = data.dimvalue(0) else: nz = data.shape[0] ny = data.shape[1] nx = data.shape[2] x = np.arange(nx) y = np.arange(ny) z = np.arange(nz) args = args[1:] else: x = args[0] y = args[1] z = args[2] data = args[3] args = args[4:] vmin = kwargs.pop('vmin', data.min()) vmax = kwargs.pop('vmax', data.max()) if vmin >= vmax: raise ValueError("Minimum value larger than maximum value") alpha_min = kwargs.pop('alpha_min', 0.0) alpha_max = kwargs.pop('alpha_max', 1.0) cmap = plotutil.getcolormap(**kwargs) norm = kwargs.pop('norm', colors.Normalize(vmin, vmax, clip=True)) if len(args) > 0: level_arg = args[0] if isinstance(level_arg, int): cn = level_arg ls = LegendManage.createLegendScheme(vmin, vmax, cn, cmap) else: if isinstance(level_arg, NDArray): level_arg = level_arg.aslist() ls = LegendManage.createLegendScheme(vmin, vmax, level_arg, cmap) plotutil.setlegendscheme(ls, **kwargs) ls.setNormalize(norm._norm) ls.setColorMap(cmap) graphics = GraphicFactory.volume(data.asarray(), x.asarray(), y.asarray(), z.asarray(), ls, \ alpha_min, alpha_max) else: opacity_nodes = kwargs.pop('opacity_nodes', None) opacity_levels = kwargs.pop('opacity_levels', [0., 1.]) graphics = GraphicFactory.volume(data.asarray(), x.asarray(), y.asarray(), z.asarray(), cmap, \ norm._norm, opacity_nodes, opacity_levels) ray_casting = kwargs.pop('ray_casting', None) if not ray_casting is None: graphics.setRayCastingType(ray_casting) brightness = kwargs.pop('brightness', None) if not brightness is None: graphics.setBrightness(brightness) visible = kwargs.pop('visible', True) if visible: self.add_graphic(graphics) return graphics def view(self): """ Open GLForm """ form = GLForm(self._axes) form.setSize(600, 500) form.setLocationRelativeTo(None) form.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE) form.setVisible(True) class MapAxes3D(Axes3DGL): """ Map 3D axes. """ def __init__(self, *args, **kwargs): super(MapAxes3D, self).__init__(*args, **kwargs) projection = kwargs.pop('projection', None) if not projection is None: self._axes.setProjInfo(projection) def _set_plot(self, plot): """ Set plot. :param plot: (*EarthPlot3D*) Plot. """ if plot is None: self._axes = MapGLPlot() else: self._axes = plot @property def axestype(self): return '3d' @property def projection(self): return self._axes.getProjInfo() class EarthAxes3D(Axes3DGL): """ Earth spherical 3D axes. """ def __init__(self, *args, **kwargs): kwargs['aspect'] = 'equal' if not kwargs.has_key('bgcolor'): kwargs['bgcolor'] = 'k' kwargs['clip_plane'] = False kwargs['axis'] = False if not kwargs.has_key('distance'): kwargs['distance'] = 500 super(EarthAxes3D, self).__init__(*args, **kwargs) image = kwargs.pop('image', 'world_topo.jpg') if not image is None: if not os.path.exists(image): image = os.path.join(migl.get_map_folder(), image) if os.path.exists(image): self._axes.earthImage(image) def _set_plot(self, plot): """ Set plot. :param plot: (*EarthPlot3D*) Plot. """ if plot is None: self._axes = EarthGLPlot() else: self._axes = plot @property def axestype(self): return '3d' def earth_image(self, image): """ Set earth surface image. :param image: (*str*) Earth image file path. """ if not os.path.exists(image): image = os.path.join(migl.get_map_folder(), image) if os.path.exists(image): self._axes.earthImage(image) def lonlat(self, lon_delta=30, lat_delta=30, npoints=50, offset=10, **kwargs): """ Draw longitude and latitude lines. :param lon_delta: (*float*) Longitude delta. Default is 30. :param lat_delta: (*float*) Latitude delta. Default is 30. :param npoints: (*int*) Number of points in one longitude/latitude line. Default is 50. :param offset: (*float*) Altitude offset from earth surface. Default is 10. :return: Longitude and latitude lines. """ nlon = (int)(360. / lon_delta) lons = np.zeros([nlon, npoints]) lats = np.zeros([nlon, npoints]) alts = np.zeros([nlon, npoints]) + offset lat = np.linspace(-90., 90., npoints) idx = 0 for i in np.arange(0., 360., lon_delta): lons[idx] = np.full(npoints, i) lats[idx] = lat idx += 1 self.plot(lons, lats, alts, **kwargs) nlat = (int)(180. / lat_delta) lons = np.zeros([nlat, npoints]) lats = np.zeros([nlat, npoints]) alts = np.zeros([nlat, npoints]) + offset lon = np.linspace(-180., 180., npoints) idx = 0 for i in np.arange(-90., 90., lat_delta): lats[idx] = np.full(npoints, i) lons[idx] = lon idx += 1 self.plot(lons, lats, alts, **kwargs) def axis(self, limits): """ Sets the min and max of the x,y, axes, with ``[xmin, xmax, ymin, ymax, zmin, zmax]`` . :param limits: (*list*) Min and max of the x,y,z axes. """ if len(limits) == 6: xmin = limits[0] xmax = limits[1] ymin = limits[2] ymax = limits[3] zmin = limits[4] zmax = limits[5] extent = Extent3D(xmin, xmax, ymin, ymax, zmin, zmax) self._axes.setDrawExtent(extent) return True else: print('The limits parameter must be a list with 6 elements: xmin, xmax, ymin, ymax, zmin, zmax!') return None ####################################################