mirror of
https://github.com/meteoinfo/MeteoInfo.git
synced 2025-12-08 20:36:05 +00:00
start adding MaskedArray in numeric package
This commit is contained in:
parent
e4d3a044e8
commit
e5bbee86cf
@ -1,6 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<MeteoInfo File="milconfig.xml" Type="configurefile">
|
||||
<Path OpenPath="D:\Working\MIScript\Jython\mis\common_math\optimize">
|
||||
<Path OpenPath="D:\Working\MIScript\Jython\mis\array">
|
||||
<RecentFolder Folder="D:\Working\MIScript\Jython\mis\plot_types\3d"/>
|
||||
<RecentFolder Folder="D:\Working\MIScript\Jython\mis\test"/>
|
||||
<RecentFolder Folder="D:\Working\MIScript\Jython\mis\plot_types\3d\jogl"/>
|
||||
@ -12,21 +12,23 @@
|
||||
<RecentFolder Folder="D:\Working\MIScript\Jython\mis\io\geotiff"/>
|
||||
<RecentFolder Folder="D:\Working\MIScript\Jython\mis\plot_types"/>
|
||||
<RecentFolder Folder="D:\Working\MIScript\Jython\mis\plot_types\bar"/>
|
||||
<RecentFolder Folder="D:\Working\MIScript\Jython\mis"/>
|
||||
<RecentFolder Folder="D:\Working\MIScript\Jython\mis\common_math"/>
|
||||
<RecentFolder Folder="D:\Working\MIScript\Jython\mis\array"/>
|
||||
<RecentFolder Folder="D:\Working\MIScript\Jython\mis\common_math\optimize"/>
|
||||
<RecentFolder Folder="D:\Working\MIScript\Jython\mis"/>
|
||||
<RecentFolder Folder="D:\Working\MIScript\Jython\mis\array"/>
|
||||
</Path>
|
||||
<File>
|
||||
<OpenedFiles>
|
||||
<OpenedFile File="D:\Working\MIScript\Jython\mis\toolbox\miml\cluster\dbscan_1.py"/>
|
||||
<OpenedFile File="D:\Working\MIScript\Jython\mis\plot_types\bar\bar_hatch.py"/>
|
||||
<OpenedFile File="D:\Working\MIScript\Jython\mis\common_math\optimize\fixed_point.py"/>
|
||||
<OpenedFile File="D:\Working\MIScript\Jython\mis\array\masked_array_1.py"/>
|
||||
</OpenedFiles>
|
||||
<RecentFiles>
|
||||
<RecentFile File="D:\Working\MIScript\Jython\mis\toolbox\miml\cluster\dbscan_1.py"/>
|
||||
<RecentFile File="D:\Working\MIScript\Jython\mis\plot_types\bar\bar_hatch.py"/>
|
||||
<RecentFile File="D:\Working\MIScript\Jython\mis\common_math\optimize\fixed_point.py"/>
|
||||
<RecentFile File="D:\Working\MIScript\Jython\mis\array\masked_array_1.py"/>
|
||||
</RecentFiles>
|
||||
</File>
|
||||
<Font>
|
||||
@ -34,5 +36,5 @@
|
||||
</Font>
|
||||
<LookFeel DockWindowDecorated="true" LafDecorated="true" Name="FlatDarkLaf"/>
|
||||
<Figure DoubleBuffering="true"/>
|
||||
<Startup MainFormLocation="-7,-7" MainFormSize="1293,693"/>
|
||||
<Startup MainFormLocation="-7,0" MainFormSize="1380,813"/>
|
||||
</MeteoInfo>
|
||||
|
||||
@ -1,5 +1,48 @@
|
||||
import mipylib.numeric as np
|
||||
|
||||
def resample_nn_1d(a, centers):
|
||||
"""Return one-dimensional nearest-neighbor indexes based on user-specified centers.
|
||||
Parameters
|
||||
----------
|
||||
a : array-like
|
||||
1-dimensional array of numeric values from which to extract indexes of
|
||||
nearest-neighbors
|
||||
centers : array-like
|
||||
1-dimensional array of numeric values representing a subset of values to approximate
|
||||
Returns
|
||||
-------
|
||||
A list of indexes (in type given by `array.argmin()`) representing values closest to
|
||||
given array values.
|
||||
"""
|
||||
ix = []
|
||||
for center in centers:
|
||||
index = (np.abs(a - center)).argmin()
|
||||
if index not in ix:
|
||||
ix.append(index)
|
||||
return ix
|
||||
|
||||
def nearest_intersection_idx(a, b):
|
||||
"""Determine the index of the point just before two lines with common x values.
|
||||
Parameters
|
||||
----------
|
||||
a : array-like
|
||||
1-dimensional array of y-values for line 1
|
||||
b : array-like
|
||||
1-dimensional array of y-values for line 2
|
||||
Returns
|
||||
-------
|
||||
An array of indexes representing the index of the values
|
||||
just before the intersection(s) of the two lines.
|
||||
"""
|
||||
# Difference in the two y-value sets
|
||||
difference = a - b
|
||||
|
||||
# Determine the point just before the intersection of the lines
|
||||
# Will return multiple points for multiple intersections
|
||||
sign_change_idx, = np.nonzero(np.diff(np.sign(difference)))
|
||||
|
||||
return sign_change_idx
|
||||
|
||||
def _remove_nans(*variables):
|
||||
"""Remove NaNs from arrays that cause issues with calculations.
|
||||
Takes a variable number of arguments and returns masked arrays in the same
|
||||
|
||||
Binary file not shown.
@ -4,6 +4,7 @@ from . import lib
|
||||
from .lib import *
|
||||
from . import linalg
|
||||
from . import random
|
||||
from . import ma
|
||||
from . import fitting
|
||||
from . import stats
|
||||
from . import interpolate
|
||||
@ -17,6 +18,6 @@ __all__ = []
|
||||
__all__.extend(['__version__'])
|
||||
__all__.extend(core.__all__)
|
||||
__all__.extend(lib.__all__)
|
||||
__all__.extend(['linalg', 'fitting', 'random', 'stats', 'interpolate', 'optimize', 'signal', 'spatial',
|
||||
__all__.extend(['linalg', 'fitting', 'random', 'ma', 'stats', 'interpolate', 'optimize', 'signal', 'spatial',
|
||||
'special'])
|
||||
__all__.extend(['griddata'])
|
||||
1
meteoinfo-lab/pylib/mipylib/numeric/ma/__init__.py
Normal file
1
meteoinfo-lab/pylib/mipylib/numeric/ma/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from .core import masked_array, MaskedArray
|
||||
165
meteoinfo-lab/pylib/mipylib/numeric/ma/core.py
Normal file
165
meteoinfo-lab/pylib/mipylib/numeric/ma/core.py
Normal file
@ -0,0 +1,165 @@
|
||||
from mipylib import numeric as np
|
||||
from ..core._ndarray import NDArray
|
||||
from org.meteoinfo.ndarray.math import ArrayUtil
|
||||
|
||||
nomask = False
|
||||
|
||||
class MaskedArray(NDArray):
|
||||
"""
|
||||
An array class with possibly masked values.
|
||||
Masked values of True exclude the corresponding element from any
|
||||
computation.
|
||||
Construction::
|
||||
x = MaskedArray(data, mask=nomask, dtype=None, copy=False, subok=True,
|
||||
ndmin=0, fill_value=None, keep_mask=True, hard_mask=None,
|
||||
shrink=True, order=None)
|
||||
Parameters
|
||||
----------
|
||||
data : array_like
|
||||
Input data.
|
||||
mask : sequence, optional
|
||||
Mask. Must be convertible to an array of booleans with the same
|
||||
shape as `data`. True indicates a masked (i.e. invalid) data.
|
||||
dtype : dtype, optional
|
||||
Data type of the output.
|
||||
If `dtype` is None, the type of the data argument (``data.dtype``)
|
||||
is used. If `dtype` is not None and different from ``data.dtype``,
|
||||
a copy is performed.
|
||||
copy : bool, optional
|
||||
Whether to copy the input data (True), or to use a reference instead.
|
||||
Default is False.
|
||||
subok : bool, optional
|
||||
Whether to return a subclass of `MaskedArray` if possible (True) or a
|
||||
plain `MaskedArray`. Default is True.
|
||||
ndmin : int, optional
|
||||
Minimum number of dimensions. Default is 0.
|
||||
fill_value : scalar, optional
|
||||
Value used to fill in the masked values when necessary.
|
||||
If None, a default based on the data-type is used.
|
||||
"""
|
||||
|
||||
def __init__(self, data, mask=nomask, dtype=None, copy=False,
|
||||
subok=True, ndmin=0, fill_value=None):
|
||||
if isinstance(data, NDArray):
|
||||
data = data._array
|
||||
super(MaskedArray, self).__init__(data)
|
||||
self._data = NDArray(self._array)
|
||||
self._baseclass = getattr(data, '_baseclass', type(self._data))
|
||||
if mask is nomask:
|
||||
self._mask = mask
|
||||
else:
|
||||
self._mask = np.array(mask)
|
||||
if self._mask.shape != self._data.shape:
|
||||
self._mask = self._mask.reshape(self._data.shape)
|
||||
if self._mask.dtype != np.dtype.bool:
|
||||
self._mask = self._mask.astype(np.dtype.bool)
|
||||
self._fill_value = fill_value
|
||||
|
||||
def __str__(self):
|
||||
r = 'masked_array(data=' + ArrayUtil.convertToString(self._data._array) + ',\n\tmask='
|
||||
if self._mask is nomask:
|
||||
r = r + 'False,'
|
||||
else:
|
||||
r = r + ArrayUtil.convertToString(self._mask._array) + ','
|
||||
r = r + '\n\tfill_value=' + str(self._fill_value) + ')'
|
||||
return r
|
||||
|
||||
def __repr__(self):
|
||||
return self.__str__()
|
||||
|
||||
def filled(self, fill_value=None):
|
||||
"""
|
||||
Return a copy of self, with masked values filled with a given value.
|
||||
**However**, if there are no masked values to fill, self will be
|
||||
returned instead as an ndarray.
|
||||
Parameters
|
||||
----------
|
||||
fill_value : array_like, optional
|
||||
The value to use for invalid entries. Can be scalar or non-scalar.
|
||||
If non-scalar, the resulting ndarray must be broadcastable over
|
||||
input array. Default is None, in which case, the `fill_value`
|
||||
attribute of the array is used instead.
|
||||
Returns
|
||||
-------
|
||||
filled_array : ndarray
|
||||
A copy of ``self`` with invalid entries replaced by *fill_value*
|
||||
(be it the function argument or the attribute of ``self``), or
|
||||
``self`` itself as an ndarray if there are no invalid entries to
|
||||
be replaced.
|
||||
Notes
|
||||
-----
|
||||
The result is **not** a MaskedArray!
|
||||
Examples
|
||||
--------
|
||||
>>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999)
|
||||
>>> x.filled()
|
||||
array([ 1, 2, -999, 4, -999])
|
||||
>>> x.filled(fill_value=1000)
|
||||
array([ 1, 2, 1000, 4, 1000])
|
||||
>>> type(x.filled())
|
||||
<class 'numpy.ndarray'>
|
||||
Subclassing is preserved. This means that if, e.g., the data part of
|
||||
the masked array is a recarray, `filled` returns a recarray:
|
||||
>>> x = np.array([(-1, 2), (-3, 4)], dtype='i8,i8').view(np.recarray)
|
||||
>>> m = np.ma.array(x, mask=[(True, False), (False, True)])
|
||||
>>> m.filled()
|
||||
rec.array([(999999, 2), ( -3, 999999)],
|
||||
dtype=[('f0', '<i8'), ('f1', '<i8')])
|
||||
"""
|
||||
m = self._mask
|
||||
if m is nomask:
|
||||
return self._data
|
||||
|
||||
if fill_value is None:
|
||||
fill_value = self._fill_value
|
||||
|
||||
result = self._data.copy()
|
||||
result[m] = fill_value
|
||||
return result
|
||||
|
||||
def sum(self, axis=None):
|
||||
"""
|
||||
Sum of array elements over a given axis.
|
||||
|
||||
:param axis: (*int*) Axis along which the standard deviation is computed.
|
||||
The default is to compute the standard deviation of the flattened array.
|
||||
|
||||
returns: (*array_like*) Sum result.
|
||||
"""
|
||||
if self._mask is nomask:
|
||||
return self._data.sum(axis=axis)
|
||||
else:
|
||||
r = self.filled(0)
|
||||
return r.sum(axis=axis)
|
||||
|
||||
def count(self, axis=None):
|
||||
"""
|
||||
Count of valid array elements over a given axis.
|
||||
|
||||
:param axis: (*int*) Axis along which the standard deviation is computed.
|
||||
The default is to compute the standard deviation of the flattened array.
|
||||
:return: (*array_like*) Count result.
|
||||
"""
|
||||
if self._mask is nomask:
|
||||
mask = np.ones(self._data.shape)
|
||||
return mask.sum(axis=axis)
|
||||
else:
|
||||
return (~self._mask).sum(axis=axis)
|
||||
|
||||
def mean(self, axis=None):
|
||||
"""
|
||||
Compute tha arithmetic mean along the specified axis.
|
||||
|
||||
:param axis: (*int*) Axis along which the value is computed.
|
||||
The default is to compute the value of the flattened array.
|
||||
|
||||
returns: (*array_like*) Mean result
|
||||
"""
|
||||
if self._mask is nomask:
|
||||
return self._data.mean(axis=axis)
|
||||
else:
|
||||
dsum = self.sum(axis=axis)
|
||||
cnt = self.count(axis=axis)
|
||||
return dsum * 1. / cnt
|
||||
|
||||
masked_array = MaskedArray
|
||||
@ -7763,6 +7763,7 @@ public class ArrayMath {
|
||||
Number n = new Double(v);
|
||||
switch (dt) {
|
||||
case INT:
|
||||
case BOOLEAN:
|
||||
return n.intValue();
|
||||
case FLOAT:
|
||||
return n.floatValue();
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user