Add EuclideanDistance class

This commit is contained in:
wyq 2019-10-21 22:45:53 +08:00
parent 6e8693d93c
commit 4baeb6c8e2

View File

@ -0,0 +1,203 @@
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
package org.meteoinfo.math.distance;
/**
*
* @author Yaqiang Wang
*/
public class EuclideanDistance {
/**
* The weights used in weighted distance.
*/
private double[] weight = null;
/**
* Constructor. Standard (unweighted) Euclidean distance.
*/
public EuclideanDistance() {
}
/**
* Constructor with a given weight vector.
*
* @param weight the weight vector.
*/
public EuclideanDistance(double[] weight) {
for (int i = 0; i < weight.length; i++) {
if (weight[i] < 0) {
throw new IllegalArgumentException(String.format("Weight has to be nonnegative: %f", weight[i]));
}
}
this.weight = weight;
}
@Override
public String toString() {
if (weight != null) {
return "weighted Euclidean distance";
} else {
return "Euclidean distance";
}
}
/**
* Euclidean distance between the two arrays of type integer. No missing
* value handling in this method.
*/
public double d(int[] x, int[] y) {
if (x.length != y.length) {
throw new IllegalArgumentException(String.format("Arrays have different length: x[%d], y[%d]", x.length, y.length));
}
double dist = 0.0;
if (weight == null) {
for (int i = 0; i < x.length; i++) {
double d = x[i] - y[i];
dist += d * d;
}
} else {
if (x.length != weight.length) {
throw new IllegalArgumentException(String.format("Input vectors and weight vector have different length: %d, %d", x.length, weight.length));
}
for (int i = 0; i < x.length; i++) {
double d = x[i] - y[i];
dist += weight[i] * d * d;
}
}
return Math.sqrt(dist);
}
/**
* Euclidean distance between the two arrays of type float. NaN will be
* treated as missing values and will be excluded from the calculation. Let
* m be the number nonmissing values, and n be the number of all values. The
* returned distance is sqrt(n * d / m), where d is the square of distance
* between nonmissing values.
*/
public double d(float[] x, float[] y) {
if (x.length != y.length) {
throw new IllegalArgumentException(String.format("Arrays have different length: x[%d], y[%d]", x.length, y.length));
}
int n = x.length;
int m = 0;
double dist = 0.0;
if (weight == null) {
for (int i = 0; i < n; i++) {
if (!Float.isNaN(x[i]) && !Float.isNaN(y[i])) {
m++;
double d = x[i] - y[i];
dist += d * d;
}
}
} else {
if (x.length != weight.length) {
throw new IllegalArgumentException(String.format("Input vectors and weight vector have different length: %d, %d", x.length, weight.length));
}
for (int i = 0; i < n; i++) {
if (!Float.isNaN(x[i]) && !Float.isNaN(y[i])) {
m++;
double d = x[i] - y[i];
dist += weight[i] * d * d;
}
}
}
if (m == 0) {
dist = Double.NaN;
} else {
dist = n * dist / m;
}
return Math.sqrt(dist);
}
/**
* Euclidean distance between the two arrays of type double. NaN will be
* treated as missing values and will be excluded from the calculation. Let
* m be the number nonmissing values, and n be the number of all values. The
* returned distance is sqrt(n * d / m), where d is the square of distance
* between nonmissing values.
*/
public double d(double[] x, double[] y) {
if (x.length != y.length) {
throw new IllegalArgumentException(String.format("Arrays have different length: x[%d], y[%d]", x.length, y.length));
}
int n = x.length;
int m = 0;
double dist = 0.0;
if (weight == null) {
for (int i = 0; i < n; i++) {
if (!Double.isNaN(x[i]) && !Double.isNaN(y[i])) {
m++;
double d = x[i] - y[i];
dist += d * d;
}
}
} else {
if (x.length != weight.length) {
throw new IllegalArgumentException(String.format("Input vectors and weight vector have different length: %d, %d", x.length, weight.length));
}
for (int i = 0; i < n; i++) {
if (!Double.isNaN(x[i]) && !Double.isNaN(y[i])) {
m++;
double d = x[i] - y[i];
dist += weight[i] * d * d;
}
}
}
if (m == 0) {
dist = Double.NaN;
} else {
dist = n * dist / m;
}
return Math.sqrt(dist);
}
/**
* eturns the proximity matrix of a dataset for given distance function.
*
* @param data Input data
* @param half If true, only the lower half of matrix is allocated to save space.
* @return Proximity maxtrix
*/
public double[][] proximity(double[][] data, boolean half) {
int n = data.length;
double[][] proximity;
if (half) {
proximity = new double[n][];
for (int i = 0; i < n; i++) {
proximity[i] = new double[i + 1];
for (int j = 0; j < i; j++) {
proximity[i][j] = this.d(data[i], data[j]);
}
}
} else {
proximity = new double[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {
proximity[i][j] = this.d(data[i], data[j]);
proximity[j][i] = proximity[i][j];
}
}
}
return proximity;
}
}