mirror of
https://github.com/meteoinfo/MeteoInfo.git
synced 2025-12-08 20:36:05 +00:00
Add EuclideanDistance class
This commit is contained in:
parent
6e8693d93c
commit
4baeb6c8e2
@ -0,0 +1,203 @@
|
||||
/*
|
||||
* To change this license header, choose License Headers in Project Properties.
|
||||
* To change this template file, choose Tools | Templates
|
||||
* and open the template in the editor.
|
||||
*/
|
||||
package org.meteoinfo.math.distance;
|
||||
|
||||
/**
|
||||
*
|
||||
* @author Yaqiang Wang
|
||||
*/
|
||||
public class EuclideanDistance {
|
||||
|
||||
/**
|
||||
* The weights used in weighted distance.
|
||||
*/
|
||||
private double[] weight = null;
|
||||
|
||||
/**
|
||||
* Constructor. Standard (unweighted) Euclidean distance.
|
||||
*/
|
||||
public EuclideanDistance() {
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructor with a given weight vector.
|
||||
*
|
||||
* @param weight the weight vector.
|
||||
*/
|
||||
public EuclideanDistance(double[] weight) {
|
||||
for (int i = 0; i < weight.length; i++) {
|
||||
if (weight[i] < 0) {
|
||||
throw new IllegalArgumentException(String.format("Weight has to be nonnegative: %f", weight[i]));
|
||||
}
|
||||
}
|
||||
|
||||
this.weight = weight;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
if (weight != null) {
|
||||
return "weighted Euclidean distance";
|
||||
} else {
|
||||
return "Euclidean distance";
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Euclidean distance between the two arrays of type integer. No missing
|
||||
* value handling in this method.
|
||||
*/
|
||||
public double d(int[] x, int[] y) {
|
||||
if (x.length != y.length) {
|
||||
throw new IllegalArgumentException(String.format("Arrays have different length: x[%d], y[%d]", x.length, y.length));
|
||||
}
|
||||
|
||||
double dist = 0.0;
|
||||
|
||||
if (weight == null) {
|
||||
for (int i = 0; i < x.length; i++) {
|
||||
double d = x[i] - y[i];
|
||||
dist += d * d;
|
||||
}
|
||||
} else {
|
||||
if (x.length != weight.length) {
|
||||
throw new IllegalArgumentException(String.format("Input vectors and weight vector have different length: %d, %d", x.length, weight.length));
|
||||
}
|
||||
|
||||
for (int i = 0; i < x.length; i++) {
|
||||
double d = x[i] - y[i];
|
||||
dist += weight[i] * d * d;
|
||||
}
|
||||
}
|
||||
|
||||
return Math.sqrt(dist);
|
||||
}
|
||||
|
||||
/**
|
||||
* Euclidean distance between the two arrays of type float. NaN will be
|
||||
* treated as missing values and will be excluded from the calculation. Let
|
||||
* m be the number nonmissing values, and n be the number of all values. The
|
||||
* returned distance is sqrt(n * d / m), where d is the square of distance
|
||||
* between nonmissing values.
|
||||
*/
|
||||
public double d(float[] x, float[] y) {
|
||||
if (x.length != y.length) {
|
||||
throw new IllegalArgumentException(String.format("Arrays have different length: x[%d], y[%d]", x.length, y.length));
|
||||
}
|
||||
|
||||
int n = x.length;
|
||||
int m = 0;
|
||||
double dist = 0.0;
|
||||
|
||||
if (weight == null) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
if (!Float.isNaN(x[i]) && !Float.isNaN(y[i])) {
|
||||
m++;
|
||||
double d = x[i] - y[i];
|
||||
dist += d * d;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (x.length != weight.length) {
|
||||
throw new IllegalArgumentException(String.format("Input vectors and weight vector have different length: %d, %d", x.length, weight.length));
|
||||
}
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
if (!Float.isNaN(x[i]) && !Float.isNaN(y[i])) {
|
||||
m++;
|
||||
double d = x[i] - y[i];
|
||||
dist += weight[i] * d * d;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (m == 0) {
|
||||
dist = Double.NaN;
|
||||
} else {
|
||||
dist = n * dist / m;
|
||||
}
|
||||
|
||||
return Math.sqrt(dist);
|
||||
}
|
||||
|
||||
/**
|
||||
* Euclidean distance between the two arrays of type double. NaN will be
|
||||
* treated as missing values and will be excluded from the calculation. Let
|
||||
* m be the number nonmissing values, and n be the number of all values. The
|
||||
* returned distance is sqrt(n * d / m), where d is the square of distance
|
||||
* between nonmissing values.
|
||||
*/
|
||||
public double d(double[] x, double[] y) {
|
||||
if (x.length != y.length) {
|
||||
throw new IllegalArgumentException(String.format("Arrays have different length: x[%d], y[%d]", x.length, y.length));
|
||||
}
|
||||
|
||||
int n = x.length;
|
||||
int m = 0;
|
||||
double dist = 0.0;
|
||||
|
||||
if (weight == null) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
if (!Double.isNaN(x[i]) && !Double.isNaN(y[i])) {
|
||||
m++;
|
||||
double d = x[i] - y[i];
|
||||
dist += d * d;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (x.length != weight.length) {
|
||||
throw new IllegalArgumentException(String.format("Input vectors and weight vector have different length: %d, %d", x.length, weight.length));
|
||||
}
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
if (!Double.isNaN(x[i]) && !Double.isNaN(y[i])) {
|
||||
m++;
|
||||
double d = x[i] - y[i];
|
||||
dist += weight[i] * d * d;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (m == 0) {
|
||||
dist = Double.NaN;
|
||||
} else {
|
||||
dist = n * dist / m;
|
||||
}
|
||||
|
||||
return Math.sqrt(dist);
|
||||
}
|
||||
|
||||
/**
|
||||
* eturns the proximity matrix of a dataset for given distance function.
|
||||
*
|
||||
* @param data Input data
|
||||
* @param half If true, only the lower half of matrix is allocated to save space.
|
||||
* @return Proximity maxtrix
|
||||
*/
|
||||
public double[][] proximity(double[][] data, boolean half) {
|
||||
int n = data.length;
|
||||
double[][] proximity;
|
||||
if (half) {
|
||||
proximity = new double[n][];
|
||||
for (int i = 0; i < n; i++) {
|
||||
proximity[i] = new double[i + 1];
|
||||
for (int j = 0; j < i; j++) {
|
||||
proximity[i][j] = this.d(data[i], data[j]);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
proximity = new double[n][n];
|
||||
for (int i = 0; i < n; i++) {
|
||||
for (int j = 0; j < i; j++) {
|
||||
proximity[i][j] = this.d(data[i], data[j]);
|
||||
proximity[j][i] = proximity[i][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return proximity;
|
||||
}
|
||||
}
|
||||
Loading…
x
Reference in New Issue
Block a user