mirror of
https://github.com/espruino/Espruino.git
synced 2025-12-08 19:06:15 +00:00
138 lines
4.5 KiB
C++
138 lines
4.5 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/lite/experimental/micro/kernels/all_ops_resolver.h"
|
|
#include "tensorflow/lite/experimental/micro/micro_error_reporter.h"
|
|
#include "tensorflow/lite/experimental/micro/micro_interpreter.h"
|
|
#include "tensorflow/lite/core/api/error_reporter.h"
|
|
#include "tensorflow/lite/experimental/micro/compatibility.h"
|
|
#include "tensorflow/lite/schema/schema_generated.h"
|
|
#include "tensorflow/lite/version.h"
|
|
extern "C" {
|
|
#include "jsinteractive.h"
|
|
#include "tensorflow.h"
|
|
|
|
//void DebugLog(const char* s) { jsiConsolePrint("TF:");jsiConsolePrint(s); }
|
|
|
|
namespace tflite {
|
|
|
|
class EspruinoErrorReporter : public ErrorReporter {
|
|
public:
|
|
~EspruinoErrorReporter() {}
|
|
int Report(const char* format, va_list args) override {
|
|
char log_buffer[256];
|
|
espruino_snprintf_va(log_buffer, sizeof(log_buffer), format, args);
|
|
jsExceptionHere(JSET_ERROR, "%s", log_buffer);
|
|
return 0;
|
|
}
|
|
TF_LITE_REMOVE_VIRTUAL_DELETE
|
|
};
|
|
|
|
}
|
|
|
|
typedef struct {
|
|
// logging
|
|
tflite::EspruinoErrorReporter micro_error_reporter;
|
|
// This pulls in the operation implementations we need
|
|
tflite::ops::micro::AllOpsResolver resolver;
|
|
// Build an interpreter to run the model with
|
|
tflite::MicroInterpreter interpreter;
|
|
// Create an area of memory to use for input, output, and intermediate arrays.
|
|
// Finding the minimum value for your model may require some trial and error.
|
|
uint8_t tensor_arena[0];
|
|
} TFData;
|
|
char tfDataPtr[sizeof(TFData)];
|
|
|
|
size_t tf_get_size(size_t arena_size, const char *model_data) {
|
|
return sizeof(TFData) + arena_size;
|
|
}
|
|
|
|
bool tf_create(void *dataPtr, size_t arena_size, const char *model_data) {
|
|
TFData *tf = (TFData*)dataPtr;
|
|
new (&tf->micro_error_reporter)tflite::EspruinoErrorReporter();
|
|
// Set up logging
|
|
tflite::ErrorReporter* error_reporter = &tf->micro_error_reporter;
|
|
|
|
// Map the model into a usable data structure. This doesn't involve any
|
|
// copying or parsing, it's a very lightweight operation.
|
|
const tflite::Model* model = ::tflite::GetModel(model_data);
|
|
if (model->version() != TFLITE_SCHEMA_VERSION) {
|
|
error_reporter->Report(
|
|
"Model provided is schema version %d not equal "
|
|
"to supported version %d.",
|
|
model->version(), TFLITE_SCHEMA_VERSION);
|
|
return false;
|
|
}
|
|
|
|
new (&tf->resolver)tflite::ops::micro::AllOpsResolver();
|
|
|
|
// Build an interpreter to run the model with
|
|
new (&tf->interpreter)tflite::MicroInterpreter(
|
|
model, tf->resolver, tf->tensor_arena,
|
|
arena_size, error_reporter);
|
|
|
|
// Allocate memory from the tensor_arena for the model's tensors
|
|
tf->interpreter.AllocateTensors();
|
|
|
|
|
|
/*
|
|
TfLiteTensor* input = tf->interpreter.input(0);
|
|
TfLiteTensor* output = tf->interpreter.output(0);
|
|
|
|
// Place our calculated x value in the model's input tensor
|
|
input->data.f[0] = x_val;
|
|
|
|
|
|
|
|
// Read the predicted y value from the model's output tensor
|
|
float y_val = output->data.f[0];*/
|
|
|
|
return true;
|
|
}
|
|
|
|
void tf_destroy(void *dataPtr) {
|
|
TFData *tf = (TFData*)dataPtr;
|
|
|
|
tf->interpreter.~MicroInterpreter();
|
|
}
|
|
|
|
bool tf_invoke(void *dataPtr) {
|
|
TFData *tf = (TFData*)dataPtr;
|
|
tflite::ErrorReporter* error_reporter = &tf->micro_error_reporter;
|
|
// Run inference, and report any error
|
|
//jsiConsolePrintf("in %f\n",tf->interpreter.input(0)->data.f[0]);
|
|
TfLiteStatus invoke_status = tf->interpreter.Invoke();
|
|
//jsiConsolePrintf("out %f\n",tf->interpreter.output(0)->data.f[0]);
|
|
if (invoke_status != kTfLiteOk) {
|
|
error_reporter->Report("Invoke failed");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
TfLiteTensor *tf_get_input(void *dataPtr, int n) {
|
|
TFData *tf = (TFData*)dataPtr;
|
|
// Obtain pointers to the model's input and output tensors
|
|
return tf->interpreter.input(0);
|
|
}
|
|
|
|
TfLiteTensor *tf_get_output(void *dataPtr, int n) {
|
|
TFData *tf = (TFData*)dataPtr;
|
|
// Obtain pointers to the model's input and output tensors
|
|
return tf->interpreter.output(0);
|
|
}
|
|
|
|
} // extern "C"
|