Merge branch 'tensorflow' into HackStrap

This commit is contained in:
Gordon Williams 2019-09-11 14:21:24 +01:00
commit ec98c13e24
14 changed files with 1012 additions and 3 deletions

View File

@ -65,6 +65,7 @@ LIBS?=
DEFINES?=
CFLAGS?=-Wall -Wextra -Wconversion -Werror=implicit-function-declaration -fno-strict-aliasing -g
CFLAGS+=-Wno-expansion-to-defined # remove warnings created by Nordic's libs
CCFLAGS?= # specific flags when compiling cc files
LDFLAGS?=-Winline -g
OPTIMIZEFLAGS?=
#-fdiagnostics-show-option - shows which flags can be used with -Werror
@ -272,6 +273,7 @@ src/jsspi.c \
src/jshardware_common.c \
$(WRAPPERFILE)
CPPSOURCES =
CCSOURCES =
ifdef CFILE
WRAPPERSOURCES += $(CFILE)
@ -578,6 +580,10 @@ ifeq ($(USE_WIO_LTE),1)
SOURCES += targets/stm32/stm32_ws2812b_driver.c
endif
ifeq ($(USE_TENSORFLOW),1)
include make/misc/tensorflow.make
endif
endif # BOOTLOADER ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ DON'T USE STUFF ABOVE IN BOOTLOADER
@ -593,6 +599,7 @@ include make/family/$(FAMILY).make
endif
# =========================================================================
ifdef USB
DEFINES += -DUSB
endif
@ -601,7 +608,7 @@ PININFOFILE=$(GENDIR)/jspininfo
SOURCES += $(PININFOFILE).c
SOURCES += $(WRAPPERSOURCES) $(TARGETSOURCES)
SOURCEOBJS = $(SOURCES:.c=.o) $(CPPSOURCES:.cpp=.o)
SOURCEOBJS = $(SOURCES:.c=.o) $(CPPSOURCES:.cpp=.o) $(CCSOURCES:.cc=.o)
OBJS = $(PRECOMPILED_OBJS) $(SOURCEOBJS)
@ -720,6 +727,10 @@ quiet_obj_to_bin= GEN $(PROJ_NAME).$2
@echo $($(quiet_)compile)
@$(call compile)
.cc.o: %.cc $(PLATFORM_CONFIG_FILE) $(PININFOFILE).h
@echo $($(quiet_)compile)
@$(CC) $(CCFLAGS) $(CFLAGS) $< -o $@
.cpp.o: $(PLATFORM_CONFIG_FILE) $(PININFOFILE).h
@echo $($(quiet_)compile)
@$(call compile)

View File

@ -22,6 +22,7 @@ info = {
'build' : {
'libraries' : [
'NET',
'TENSORFLOW',
'GRAPHICS',
'FILESYSTEM',
'CRYPTO','SHA256','SHA512',

203
libs/tensorflow/LICENSE Normal file
View File

@ -0,0 +1,203 @@
Copyright 2019 The TensorFlow Authors. All rights reserved.
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

142
libs/tensorflow/README.md Normal file
View File

@ -0,0 +1,142 @@
Tensorflow for Espruino
=======================
Tensorflow code is Licensed under the Apache License. See `LICENSE` for more info.
Created with:
```Bash
# https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro
git clone https://github.com/tensorflow/tensorflow --depth=1
mv tensorflow git-tensorflow
cd git-tensorflow
make -f tensorflow/lite/experimental/micro/tools/make/Makefile
make -f tensorflow/lite/experimental/micro/tools/make/Makefile TARGET=make TAGS="disco_f746ng" generate_projects
cp -R tensorflow/lite/experimental/micro/tools/make/gen/make_x86_64/prj/hello_world/make/* ..
cd ..
mv tensorflow/tensorflow/lite/experimental/micro/examples/hello_world/* .
```
## Actually using it
Follow the steps here: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/experimental/micro/examples/hello_world/create_sine_model.ipynb
Then right at the end when you have your model, do:
```Python
import base64;
print("var model=atob(\""+base64.b64encode(tflite_model)+"\");")
```
To output to base64 that you can easily stick in your code.
And to use it, do something like:
```JS
var model=atob("GAAAAFRGTDMAAA4AGAAEAAgADAAQABQADgAAAAMAAADsCQAAuAUAAKAFAAAEAAAACwAAAJAFAAB8BQAAJAUAANQEAADMBAAAxAQAALwEAABsBAAAXAAAAAwAAAAEAAAAePb//7b6//8EAAAAQAAAAJ4IZD5QVk0+7cXIPkq+Er8xYmi8i2/MPqSmNL4qZ529BkrJPsPwij08RhC/GISaPuFzVD5EElI+BF7yvgBVWz4C+///BAAAAAAEAADy1BE+hO4/PpbYQL5lm62+Of0OvqzJgT6emCU+N++UvGqNxr4E0iC+4KYUPWwbhb5x7CC9a6WBPqhwhb5h/qw+nsY4vtWAXb6Mjwa8fL+nPfqwjj4yjtU8vxOaPpw0Tj643ZQ+dEUkPCglib1csyS+V3pqPm3mj75NqYs+sw0xPucVkb4sMBm+Fy3DPbxymL3qREg+7ZoVvowzlz0K6sm+lNNoPmBunr2AD6i8St+MvgJSlD4awpw+1JWxvhaUv7xropi+lvRdPX9dkr6rZKy+rv/LPngF7L5YDX89OhGdPl5g1L5tvj2+4Ol1PQZm273xFcM9Gyq0PnMCuD4kpDy/kV5svk89SD/TlMY9fCvWvo7gej1gHou/MkCCvmLRGD++MdG7ugULv/cOhL74yme/w3mIvVy3jT2/a6k+MgrFvqiPzb1Hgt49c3a5PiUNWL5SGq4+0RRvPnKPKT6wWhw/F4r3PS0LyrwP4dy+snCYPuusFb6D8AW/FpNrvuegab4q+Mk+NoaZPiCL4b2HZLg+7/csvhoWKLwUMh6+xI8OPnLyqj7oXFk+nJrPPS/Hwz7taiC+aPmHvhXdwL4OATa+ui26PfVEVD5ZaKQ+pQq/vqB3gz0sESU+c3e+vnfT6j05v2i+jyi6vsD2gr4vEFG9RfnSvtxRFb+YV7G+Q9ZiPsFggL/waZa+nK12vhExuj5gUCQ/0FmlPeTUkL4MUQk/s0jOvRxroj0IU+q97BiUvhZEtz5mrL2/yDrKvo1wgL081wy+Ls6ZviwB4D3uUyw+dGXxvdQz0r6lutq+IKx+PNqohb7tXNI+OiQrvmyHnL0ySyG+rLOJva95lb5EJ8C9OleUvrNLyD4pp9K+F0vKPgBZ/T4QSIg+32DAPsQcDj5UsOY+16FAPlxYM76Z2Tq+ymy9PeuehL7wLRM9JGu6vliYBD7vTRw+9dhAPmKtpL51poK+W26OPUhirr4eAkq/DYCePotyzL5wbo2+R4jpPF8/5L6KHq49wh6zvinn4D7i7ay9vDeqPmJUTT7gQ8q9ah+APsw4vz3kggS+iKScvV8iu739oJW+TPKAPa7c47wjmbO+U4umvWdOmz461hq+jEe5PhHmTb78mcg+yW3Vvhl0Dz4T+wK+kmdRPpC+Rr+8Hys+dNmzvSBiHTwSc7E+1VVtPmVFgD7g6iU9Jt69vkL1Lr7+1Gg+umFkvsjsDT2nVZK9JzjfPhkItD71E20+JnrgPbUmKj2AN6y7/ufBPtjiRr7N5Ti+LC78PZRozD7YYIU9WODYve5crT6AWly9lJ4FPjok1b7qobK+tB7evBUoHr5csxG+W7KiPsDasb3In8a+jLqGPSBkVT0zh1i+Dv///wQAAABAAAAAJdpOvPRygT04MxO+aJ2/Ph26vj4CeZo9sKz7veJrTD2+Vy8/AAAAAH+BMz6e9MK+rqn4PWjdUr4Swwo+ljZPuyD7//8k+///KPv//2b///8EAAAAQAAAAFJaHb8b6Oi9u/r9vgAAAACIXR8/w63IPQAAAAByGlc/izWfvpB3tD4AAAAAViLXvmQqwD5Sxe2+AAAAAE71FLyy////BAAAAEAAAAAlH/88PwChvXBShLmTyIO/H4J2v/Wb3b3fm5E+PEGdORjtnj+wcjy9HCbRvpgF8T+gFZc4SAQRP8muzr5FmUC+AAAGAAgABAAGAAAABAAAAAQAAABPOD2+3Pv//w8AAABUT0NPIENvbnZlcnRlZC4AAQAAABAAAAAMABQABAAIAAwAEAAMAAAA8AAAAOQAAADYAAAABAAAAAMAAACQAAAASAAAAAQAAADO////AAAACBgAAAAMAAAABAAAAED8//8BAAAAAAAAAAMAAAAHAAAACAAAAAkAAAAAAA4AFAAAAAgADAAHABAADgAAAAAAAAgcAAAAEAAAAAQAAAC6////AAAAAQEAAAAHAAAAAwAAAAQAAAAFAAAABgAAAAAADgAWAAAACAAMAAcAEAAOAAAAAAAACCQAAAAYAAAADAAAAAAABgAIAAcABgAAAAAAAAEBAAAABAAAAAMAAAABAAAAAgAAAAMAAAABAAAAAAAAAAEAAAABAAAACgAAAOwCAACEAgAAJAIAANwBAACYAQAAOAEAAPAAAACsAAAATAAAAAQAAABK/f//OAAAAAEAAAAMAAAABAAAADz9//8eAAAAc2VxdWVudGlhbC9kZW5zZV8yL01hdE11bF9iaWFzAAABAAAAAQAAAI79//9MAAAAAgAAAAwAAAAEAAAAgP3//zIAAABzZXF1ZW50aWFsL2RlbnNlXzIvTWF0TXVsL1JlYWRWYXJpYWJsZU9wL3RyYW5zcG9zZQAAAgAAAAEAAAAQAAAA6v3//zAAAAAEAAAADAAAAAQAAADc/f//FwAAAHNlcXVlbnRpYWwvZGVuc2VfMS9SZWx1AAIAAAABAAAAEAAAACr+//84AAAABwAAAAwAAAAEAAAAHP7//x4AAABzZXF1ZW50aWFsL2RlbnNlXzEvTWF0TXVsX2JpYXMAAAEAAAAQAAAAbv7//0wAAAAIAAAADAAAAAQAAABg/v//MgAAAHNlcXVlbnRpYWwvZGVuc2VfMS9NYXRNdWwvUmVhZFZhcmlhYmxlT3AvdHJhbnNwb3NlAAACAAAAEAAAABAAAADK/v//MAAAAAoAAAAMAAAABAAAALz+//8VAAAAc2VxdWVudGlhbC9kZW5zZS9SZWx1AAAAAgAAAAEAAAAQAAAACv///zgAAAADAAAADAAAAAQAAAD8/v//HAAAAHNlcXVlbnRpYWwvZGVuc2UvTWF0TXVsX2JpYXMAAAAAAQAAABAAAABO////TAAAAAkAAAAMAAAABAAAAED///8wAAAAc2VxdWVudGlhbC9kZW5zZS9NYXRNdWwvUmVhZFZhcmlhYmxlT3AvdHJhbnNwb3NlAAAAAAIAAAAQAAAAAQAAAKr///9EAAAABQAAACwAAAAMAAAACAAMAAQACAAIAAAAEAAAAAQAAAABAAAAAAB/QwEAAAAAAAAACwAAAGRlbnNlX2lucHV0AAIAAAABAAAAAQAAAAAADgAUAAQAAAAIAAwAEAAOAAAAKAAAAAYAAAAQAAAACAAAAAQABAAEAAAACAAAAElkZW50aXR5AAAAAAIAAAABAAAAAQAAAAEAAAAQAAAAAAAKAAwABwAAAAgACgAAAAAAAAkDAAAA");
var tf = require("tensorflow").create(2048, model);
tf.getInput()[0] = x;
tf.invoke();
print(tf.getOutput()[0]);
```
Example code (based off the tutorial linked above) to do the training is:
```Python
import tensorflow as tf
# Numpy is a math library
import numpy as np
# Matplotlib is a graphing library
import matplotlib.pyplot as plt
# math is Python's math library
import math
# We'll generate this many sample datapoints
SAMPLES = 1000
# Set a "seed" value, so we get the same random numbers each time we run this
# notebook
np.random.seed(1337)
# Generate a uniformly distributed set of random numbers in the range from
# 0 to 2pi, which covers a complete sine wave oscillation
x_values = np.random.uniform(low=0, high=2*math.pi, size=SAMPLES)
# Shuffle the values to guarantee they're not in order
np.random.shuffle(x_values)
# Calculate the corresponding sine values
y_values = np.sin(x_values)
# Add a small random number to each y value
y_values += 0.1 * np.random.randn(*y_values.shape)
# We'll use 60% of our data for training and 20% for testing. The remaining 20%
# will be used for validation. Calculate the indices of each section.
TRAIN_SPLIT = int(0.6 * SAMPLES)
TEST_SPLIT = int(0.2 * SAMPLES + TRAIN_SPLIT)
# Use np.split to chop our data into three parts.
# The second argument to np.split is an array of indices where the data will be
# split. We provide two indices, so the data will be divided into three chunks.
x_train, x_test, x_validate = np.split(x_values, [TRAIN_SPLIT, TEST_SPLIT])
y_train, y_test, y_validate = np.split(y_values, [TRAIN_SPLIT, TEST_SPLIT])
# Double check that our splits add up correctly
assert (x_train.size + x_validate.size + x_test.size) == SAMPLES
# We'll use Keras to create a simple model architecture
from tensorflow.keras import layers
model_2 = tf.keras.Sequential()
# First layer takes a scalar input and feeds it through 16 "neurons". The
# neurons decide whether to activate based on the 'relu' activation function.
model_2.add(layers.Dense(16, activation='relu', input_shape=(1,)))
# The new second layer may help the network learn more complex representations
model_2.add(layers.Dense(16, activation='relu'))
# Final layer is a single neuron, since we want to output a single value
model_2.add(layers.Dense(1))
# Compile the model using a standard optimizer and loss function for regression
model_2.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])
history_2 = model_2.fit(x_train, y_train, epochs=600, batch_size=16,
validation_data=(x_validate, y_validate))
# Calculate and print the loss on our test dataset
loss = model_2.evaluate(x_test, y_test)
# Make predictions based on our test dataset
predictions = model_2.predict(x_test)
# Graph the predictions against the actual values
plt.clf()
plt.title('Comparison of predictions and actual values')
plt.plot(x_test, y_test, 'b.', label='Actual')
plt.plot(x_test, predictions, 'r.', label='Predicted')
plt.legend()
plt.show()
# Convert the model to the TensorFlow Lite format without quantization
converter = tf.lite.TFLiteConverter.from_keras_model(model_2)
tflite_model = converter.convert()
# Save the model to disk
open("sine_model.tflite", "wb").write(tflite_model)
# Convert the model to the TensorFlow Lite format with quantization
converter = tf.lite.TFLiteConverter.from_keras_model(model_2)
converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]
tflite_model = converter.convert()
# Save the model to disk
open("sine_model_quantized.tflite", "wb").write(tflite_model)
import base64;
print("var model=atob(\""+base64.b64encode(tflite_model)+"\");")
```

View File

@ -0,0 +1,163 @@
/*
* This file is part of Espruino, a JavaScript interpreter for Microcontrollers
*
* Copyright (C) 2013 Gordon Williams <gw@pur3.co.uk>
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* ----------------------------------------------------------------------------
* This file is designed to be parsed during the build process
*
* Contains JavaScript interface for Neopixel/WS281x/APA10x devices
* ----------------------------------------------------------------------------
*/
#include <jswrap_tensorflow.h>
#include "jsvariterator.h"
#include "jsparse.h"
#include "jsinteractive.h"
#include "jswrap_arraybuffer.h"
#include "tensorflow.h"
/*JSON{
"type" : "library",
"class" : "tensorflow"
}
*/
/*JSON{
"type" : "staticmethod",
"class" : "tensorflow",
"name" : "create",
"generate" : "jswrap_tensorflow_create",
"params" : [
["arenaSize","int","The TensorFlow Arena size"],
["model","JsVar","The model to use - this should be a flat array/string"]
],
"return" : ["JsVar","A tensorflow instance"],
"return_object" : "TFMicroInterpreter"
}
*/
JsVar *jswrap_tensorflow_create(int arena_size, JsVar *model) {
if (arena_size<512) {
jsExceptionHere(JSET_ERROR, "Invalid Arena Size");
return 0;
}
size_t modelSize = 0;
char *modelPtr = jsvGetDataPointer(model, &modelSize);
if (!modelPtr) {
jsExceptionHere(JSET_TYPEERROR, "Model is not a Flat String/ArrayBuffer");
return 0;
}
JsVar *tfmi = jspNewObject(NULL,"TFMicroInterpreter");
if (!tfmi) return 0;
size_t tfSize = tf_get_size((size_t)arena_size, modelSize);
JsVar *mi = jsvNewFlatStringOfLength(tfSize);
if (!mi) {
jsExceptionHere(JSET_ERROR, "Unable to allocate enough RAM for TensorFlow");
jsvUnLock(tfmi);
return 0;
}
char *tfPtr = jsvGetDataPointer(mi, &tfSize);
if (!tfPtr) {
assert(0);
return 0; // should never get here
}
if (!tf_create(tfPtr, (size_t)arena_size, modelPtr)) {
jsExceptionHere(JSET_ERROR, "MicroInterpreter creation failed");
jsvUnLock2(tfmi, mi);
}
jsvObjectSetChild(tfmi, "model", model); // so we keep a reference
jsvObjectSetChildAndUnLock(tfmi, "mi", mi); // so we keep a reference
return tfmi;
}
/*JSON{
"type" : "class",
"library" : "tensorflow",
"class" : "TFMicroInterpreter",
"ifdef" : "USE_TENSORFLOW"
}
Class containing an instance of TFMicroInterpreter
*/
void *jswrap_tfmicrointerpreter_getTFMI(JsVar *parent) {
JsVar *mi = jsvObjectGetChild(parent, "mi", 0);
size_t tfSize;
char *tfPtr = jsvGetDataPointer(mi, &tfSize);
jsvUnLock(mi);
if (!tfPtr)
jsExceptionHere(JSET_ERROR, "TFMicroInterpreter structure corrupted");
return tfPtr;
}
JsVar *jswrap_tfmicrointerpreter_tensorToArrayBuffer(JsVar *parent, TfLiteTensor *tensor) {
void *tfmi = jswrap_tfmicrointerpreter_getTFMI(parent);
JsVar *mi = jsvObjectGetChild(parent, "mi", 0);
if (!tensor && !mi) {
jsExceptionHere(JSET_ERROR, "Unable to get tensor");
return 0;
}
JsVarDataArrayBufferViewType abType = ARRAYBUFFERVIEW_UNDEFINED;
switch (tensor->type) {
case kTfLiteFloat32 :
abType = ARRAYBUFFERVIEW_FLOAT32; break;
default:
jsExceptionHere(JSET_TYPEERROR, "Unknown Tensor format");
return 0;
}
JsVar *ab = jsvNewArrayBufferFromString(mi,0);
JsVar *b = jswrap_typedarray_constructor(abType, ab, ((size_t)&tensor->data.f[0])-(size_t)tfmi, tensor->bytes / JSV_ARRAYBUFFER_GET_SIZE(abType));
jsvUnLock2(ab,mi);
return b;
}
/*JSON{
"type" : "method",
"class" : "TFMicroInterpreter",
"name" : "getInput",
"generate" : "jswrap_tfmicrointerpreter_getInput",
"return" : ["JsVar","An arraybuffer referencing the input data"],
"return_object" : "ArrayBufferView"
}
*/
JsVar *jswrap_tfmicrointerpreter_getInput(JsVar *parent) {
void *tfmi = jswrap_tfmicrointerpreter_getTFMI(parent);
if (!tfmi) return 0;
return jswrap_tfmicrointerpreter_tensorToArrayBuffer(parent, tf_get_input(tfmi, 0));
}
/*JSON{
"type" : "method",
"class" : "TFMicroInterpreter",
"name" : "getOutput",
"generate" : "jswrap_tfmicrointerpreter_getOutput",
"return" : ["JsVar","An arraybuffer referencing the output data"],
"return_object" : "ArrayBufferView"
}
*/
JsVar *jswrap_tfmicrointerpreter_getOutput(JsVar *parent) {
void *tfmi = jswrap_tfmicrointerpreter_getTFMI(parent);
if (!tfmi) return 0;
return jswrap_tfmicrointerpreter_tensorToArrayBuffer(parent, tf_get_output(tfmi, 0));
}
/*JSON{
"type" : "method",
"class" : "TFMicroInterpreter",
"name" : "invoke",
"generate" : "jswrap_tfmicrointerpreter_invoke"
}
*/
void jswrap_tfmicrointerpreter_invoke(JsVar *parent) {
void *tfmi = jswrap_tfmicrointerpreter_getTFMI(parent);
if (!tfmi) return;
if (!tf_invoke(tfmi)) {
jsExceptionHere(JSET_TYPEERROR, "TFMicroInterpreter invoke failed");
}
}
// FIXME: what about tf_destroy?

View File

@ -0,0 +1,21 @@
/*
* This file is part of Espruino, a JavaScript interpreter for Microcontrollers
*
* Copyright (C) 2013 Gordon Williams <gw@pur3.co.uk>
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* ----------------------------------------------------------------------------
* Contains JavaScript interface for Tensorflow
* ----------------------------------------------------------------------------
*/
#include "jspin.h"
#include "jsvar.h"
JsVar *jswrap_tensorflow_create(int arena_size, JsVar *model);
JsVar *jswrap_tfmicrointerpreter_getInput(JsVar *parent);
JsVar *jswrap_tfmicrointerpreter_getOutput(JsVar *parent);
void jswrap_tfmicrointerpreter_invoke(JsVar *parent);

View File

@ -0,0 +1,19 @@
--- a/tensorflow/lite/experimental/micro/memory_planner/greedy_memory_planner.h 2019-09-11 09:14:45.509106591 +0100
+++ b/tensorflow/lite/experimental/micro/memory_planner/greedy_memory_planner.h 2019-09-11 09:13:54.204422772 +0100
@@ -17,6 +17,7 @@
#define TENSORFLOW_LITE_EXPERIMENTAL_MICRO_MEMORY_PLANNER_GREEDY_MEMORY_PLANNER_H_
#include "tensorflow/lite/experimental/micro/memory_planner/memory_planner.h"
+#include "tensorflow/lite/experimental/micro/compatibility.h"
namespace tflite {
@@ -125,6 +126,8 @@
// Whether buffers have been added since the last plan was calculated.
bool need_to_calculate_offsets_;
+
+ TF_LITE_REMOVE_VIRTUAL_DELETE
};
} // namespace tflite

View File

@ -0,0 +1,25 @@
--- a/tensorflow/lite/experimental/micro/kernels/all_ops_resolver.h 2019-09-11 08:48:03.171950502 +0100
+++ b/tensorflow/lite/experimental/micro/kernels/all_ops_resolver.h 2019-09-11 10:47:28.818528375 +0100
@@ -22,9 +22,8 @@
class AllOpsResolver : public MicroMutableOpResolver {
public:
AllOpsResolver();
-
- private:
TF_LITE_REMOVE_VIRTUAL_DELETE
+
};
} // namespace micro
--- a/tensorflow/lite/experimental/micro/micro_error_reporter.h 2019-09-11 08:48:03.155950292 +0100
+++ b/tensorflow/lite/experimental/micro/micro_error_reporter.h 2019-09-11 10:47:45.290747773 +0100
@@ -26,8 +26,6 @@
public:
~MicroErrorReporter() {}
int Report(const char* format, va_list args) override;
-
- private:
TF_LITE_REMOVE_VIRTUAL_DELETE
};

View File

@ -0,0 +1,119 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/experimental/micro/kernels/all_ops_resolver.h"
#include "tensorflow/lite/experimental/micro/micro_error_reporter.h"
#include "tensorflow/lite/experimental/micro/micro_interpreter.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
extern "C" {
#include "jsinteractive.h"
#include "tensorflow.h"
void DebugLog(const char* s) { jsiConsolePrint(s); }
typedef struct {
// logging
tflite::MicroErrorReporter micro_error_reporter;
// This pulls in all the operation implementations we need
tflite::ops::micro::AllOpsResolver resolver;
// Build an interpreter to run the model with
tflite::MicroInterpreter interpreter;
// Create an area of memory to use for input, output, and intermediate arrays.
// Finding the minimum value for your model may require some trial and error.
uint8_t tensor_arena[0];
} TFData;
char tfDataPtr[sizeof(TFData)];
size_t tf_get_size(size_t arena_size, const char *model_data) {
return sizeof(TFData) + arena_size;
}
bool tf_create(void *dataPtr, size_t arena_size, const char *model_data) {
TFData *tf = (TFData*)dataPtr;
new (&tf->micro_error_reporter)tflite::MicroErrorReporter();
// Set up logging
tflite::ErrorReporter* error_reporter = &tf->micro_error_reporter;
// Map the model into a usable data structure. This doesn't involve any
// copying or parsing, it's a very lightweight operation.
const tflite::Model* model = ::tflite::GetModel(model_data);
if (model->version() != TFLITE_SCHEMA_VERSION) {
error_reporter->Report(
"Model provided is schema version %d not equal "
"to supported version %d.",
model->version(), TFLITE_SCHEMA_VERSION);
return false;
}
new (&tf->resolver)tflite::ops::micro::AllOpsResolver();
// Build an interpreter to run the model with
new (&tf->interpreter)tflite::MicroInterpreter(
model, tf->resolver, tf->tensor_arena,
arena_size, error_reporter);
// Allocate memory from the tensor_arena for the model's tensors
tf->interpreter.AllocateTensors();
/*
TfLiteTensor* input = tf->interpreter.input(0);
TfLiteTensor* output = tf->interpreter.output(0);
// Place our calculated x value in the model's input tensor
input->data.f[0] = x_val;
// Read the predicted y value from the model's output tensor
float y_val = output->data.f[0];*/
return true;
}
void tf_destroy(void *dataPtr) {
TFData *tf = (TFData*)dataPtr;
tf->interpreter.~MicroInterpreter();
}
bool tf_invoke(void *dataPtr) {
TFData *tf = (TFData*)dataPtr;
tflite::ErrorReporter* error_reporter = &tf->micro_error_reporter;
// Run inference, and report any error
//jsiConsolePrintf("in %f\n",tf->interpreter.input(0)->data.f[0]);
TfLiteStatus invoke_status = tf->interpreter.Invoke();
//jsiConsolePrintf("out %f\n",tf->interpreter.output(0)->data.f[0]);
if (invoke_status != kTfLiteOk) {
error_reporter->Report("Invoke failed");
return false;
}
return true;
}
TfLiteTensor *tf_get_input(void *dataPtr, int n) {
TFData *tf = (TFData*)dataPtr;
// Obtain pointers to the model's input and output tensors
return tf->interpreter.input(0);
}
TfLiteTensor *tf_get_output(void *dataPtr, int n) {
TFData *tf = (TFData*)dataPtr;
// Obtain pointers to the model's input and output tensors
return tf->interpreter.output(0);
}
} // extern "C"

View File

@ -0,0 +1,8 @@
#include "tensorflow/lite/c/c_api_internal.h"
size_t tf_get_size(size_t arena_size, const char *model_data);
bool tf_create(void *dataPtr, size_t arena_size, const char *model_data);
void tf_destroy(void *dataPtr);
bool tf_invoke(void *dataPtr);
TfLiteTensor *tf_get_input(void *dataPtr, int n);
TfLiteTensor *tf_get_output(void *dataPtr, int n);

60
make/misc/tensorflow.make Normal file
View File

@ -0,0 +1,60 @@
TENSOR_ROOT := $(ROOT)/libs/tensorflow
CCSOURCES += \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/simple_memory_allocator.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/memory_helpers.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/micro_error_reporter.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/micro_mutable_op_resolver.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/debug_log_numbers.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/test_helpers.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/micro_interpreter.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/micro_allocator.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/kernels/pack.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/kernels/logical.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/kernels/reshape.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/kernels/depthwise_conv.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/kernels/conv.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/kernels/pooling.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/kernels/softmax.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/kernels/prelu.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/kernels/ceil.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/kernels/arg_min_max.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/kernels/unpack.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/kernels/add.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/kernels/split.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/kernels/neg.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/kernels/floor.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/kernels/comparisons.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/kernels/svdf.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/kernels/all_ops_resolver.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/kernels/fully_connected.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/kernels/maximum_minimum.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/kernels/elementwise.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/kernels/strided_slice.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/kernels/round.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/memory_planner/linear_memory_planner.cc \
$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/memory_planner/greedy_memory_planner.cc \
$(TENSOR_ROOT)/tensorflow/lite/core/api/error_reporter.cc \
$(TENSOR_ROOT)/tensorflow/lite/core/api/flatbuffer_conversions.cc \
$(TENSOR_ROOT)/tensorflow/lite/core/api/op_resolver.cc \
$(TENSOR_ROOT)/tensorflow/lite/core/api/tensor_utils.cc \
$(TENSOR_ROOT)/tensorflow/lite/kernels/kernel_util.cc \
$(TENSOR_ROOT)/tensorflow/lite/kernels/internal/quantization_util.cc \
$(TENSOR_ROOT)/tensorflow.cc
#$(TENSOR_ROOT)/tensorflow/lite/experimental/micro/debug_log.cc
SOURCES += \
$(TENSOR_ROOT)/tensorflow/lite/c/c_api_internal.c \
WRAPPERSOURCES += \
$(TENSOR_ROOT)/jswrap_tensorflow.c
INCLUDE += \
-I$(TENSOR_ROOT) \
-I$(TENSOR_ROOT)/tensorflow \
-I$(TENSOR_ROOT)/third_party/gemmlowp \
-I$(TENSOR_ROOT)/third_party/kissfft \
-I$(TENSOR_ROOT)/third_party/flatbuffers/include
CCFLAGS += -DNDEBUG -g -DTF_LITE_STATIC_MEMORY --std=c++11 -g -fno-rtti -fpermissive -Wno-sign-compare -Wno-conversion -Wno-sign-conversion -Wno-missing-field-initializers -Wno-type-limits -Wno-unused-parameter

View File

@ -3592,7 +3592,7 @@ void _jsvTrace(JsVar *var, int indent, JsVar *baseVar, int level) {
else if (jsvIsFloat(var)) jsiConsolePrintf("Double %f", jsvGetFloat(var));
else if (jsvIsFunctionParameter(var)) jsiConsolePrintf("Param %q ", var);
else if (jsvIsArrayBufferName(var)) jsiConsolePrintf("ArrayBufferName[%d] ", jsvGetInteger(var));
else if (jsvIsArrayBuffer(var)) jsiConsolePrintf("%s ", jswGetBasicObjectName(var)?jswGetBasicObjectName(var):"unknown ArrayBuffer"); // way to get nice name
else if (jsvIsArrayBuffer(var)) jsiConsolePrintf("%s (offs %d, len %d)", jswGetBasicObjectName(var)?jswGetBasicObjectName(var):"unknown ArrayBuffer", var->varData.arraybuffer.byteOffset, var->varData.arraybuffer.length); // way to get nice name
else if (jsvIsString(var)) {
size_t blocks = 1;
if (jsvGetLastChild(var)) {

View File

@ -760,7 +760,7 @@ JsVar *jsvNewDataViewWithData(JsVarInt length, unsigned char *data);
* allocate it. */
JsVar *jsvNewArrayBufferWithPtr(unsigned int length, char **ptr);
/** create an arraybuffer containing the given data */
/** create an arraybuffer containing the given data - this allocates new memory and copies 'data' */
JsVar *jsvNewArrayBufferWithData(JsVarInt length, unsigned char *data);
/** Allocate a flat area of memory inside Espruino's Variable storage space.

237
tests/test_tensorflow.js Normal file
View File

@ -0,0 +1,237 @@
// sine model from 'hello world' example
var sine_model_data =
E.toString([
0x18, 0x00, 0x00, 0x00, 0x54, 0x46, 0x4c, 0x33, 0x00, 0x00, 0x0e, 0x00,
0x18, 0x00, 0x04, 0x00, 0x08, 0x00, 0x0c, 0x00, 0x10, 0x00, 0x14, 0x00,
0x0e, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x10, 0x0a, 0x00, 0x00,
0xb8, 0x05, 0x00, 0x00, 0xa0, 0x05, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
0x0b, 0x00, 0x00, 0x00, 0x90, 0x05, 0x00, 0x00, 0x7c, 0x05, 0x00, 0x00,
0x24, 0x05, 0x00, 0x00, 0xd4, 0x04, 0x00, 0x00, 0xc4, 0x00, 0x00, 0x00,
0x74, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00,
0x14, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
0x54, 0xf6, 0xff, 0xff, 0x58, 0xf6, 0xff, 0xff, 0x5c, 0xf6, 0xff, 0xff,
0x60, 0xf6, 0xff, 0xff, 0xc2, 0xfa, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00,
0x40, 0x00, 0x00, 0x00, 0x7c, 0x19, 0xa7, 0x3e, 0x99, 0x81, 0xb9, 0x3e,
0x56, 0x8b, 0x9f, 0x3e, 0x88, 0xd8, 0x12, 0xbf, 0x74, 0x10, 0x56, 0x3e,
0xfe, 0xc6, 0xdf, 0xbe, 0xf2, 0x10, 0x5a, 0xbe, 0xf0, 0xe2, 0x0a, 0xbe,
0x10, 0x5a, 0x98, 0xbe, 0xb9, 0x36, 0xce, 0x3d, 0x8f, 0x7f, 0x87, 0x3e,
0x2c, 0xb1, 0xfd, 0xbd, 0xe6, 0xa6, 0x8a, 0xbe, 0xa5, 0x3e, 0xda, 0x3e,
0x50, 0x34, 0xed, 0xbd, 0x90, 0x91, 0x69, 0xbe, 0x0e, 0xfb, 0xff, 0xff,
0x04, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x67, 0x41, 0x48, 0xbf,
0x24, 0xcd, 0xa0, 0xbe, 0xb7, 0x92, 0x0c, 0xbf, 0x00, 0x00, 0x00, 0x00,
0x98, 0xfe, 0x3c, 0x3f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x4a, 0x17, 0x9a, 0xbe,
0x41, 0xcb, 0xb6, 0xbe, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x13, 0xd6, 0x1e, 0x3e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x5a, 0xfb, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00,
0x4b, 0x98, 0xdd, 0xbd, 0x40, 0x6b, 0xcb, 0xbe, 0x36, 0x0c, 0xd4, 0x3c,
0xbd, 0x44, 0xb5, 0x3e, 0x95, 0x70, 0xe3, 0x3e, 0xe7, 0xac, 0x86, 0x3e,
0x00, 0xc4, 0x4e, 0x3d, 0x7e, 0xa6, 0x1d, 0x3e, 0xbd, 0x87, 0xbb, 0x3e,
0xb4, 0xb8, 0x09, 0xbf, 0xa1, 0x1f, 0xf8, 0xbe, 0x8d, 0x90, 0xdd, 0x3e,
0xde, 0xfa, 0x6f, 0xbe, 0xb2, 0x75, 0xe4, 0x3d, 0x6e, 0xfe, 0x36, 0x3e,
0x20, 0x18, 0xc2, 0xbe, 0x39, 0xc7, 0xfb, 0xbe, 0xfe, 0xa4, 0x30, 0xbe,
0xf7, 0x91, 0xde, 0xbe, 0xde, 0xab, 0x24, 0x3e, 0xfb, 0xbb, 0xce, 0x3e,
0xeb, 0x23, 0x80, 0xbe, 0x7b, 0x58, 0x73, 0xbe, 0x9a, 0x2e, 0x03, 0x3e,
0x10, 0x42, 0xa9, 0xbc, 0x10, 0x12, 0x64, 0xbd, 0xe3, 0x8d, 0x0c, 0x3d,
0x9e, 0x48, 0x97, 0xbe, 0x34, 0x51, 0xd4, 0xbe, 0x02, 0x3b, 0x0d, 0x3e,
0x62, 0x67, 0x89, 0xbe, 0x74, 0xdf, 0xa2, 0x3d, 0xf3, 0x25, 0xb3, 0xbe,
0xef, 0x34, 0x7b, 0x3d, 0x61, 0x70, 0xe3, 0x3d, 0xba, 0x76, 0xc0, 0xbe,
0x7d, 0xe9, 0xa7, 0x3e, 0xc3, 0xab, 0xd0, 0xbe, 0xcf, 0x7c, 0xdb, 0xbe,
0x70, 0x27, 0x9a, 0xbe, 0x98, 0xf5, 0x3c, 0xbd, 0xff, 0x4b, 0x4b, 0x3e,
0x7e, 0xa0, 0xf8, 0xbd, 0xd4, 0x6e, 0x86, 0x3d, 0x00, 0x4a, 0x07, 0x3a,
0x4c, 0x24, 0x61, 0xbe, 0x54, 0x68, 0xf7, 0xbd, 0x02, 0x3f, 0x77, 0xbe,
0x23, 0x79, 0xb3, 0x3e, 0x1c, 0x83, 0xad, 0xbd, 0xc8, 0x92, 0x8d, 0x3e,
0xa8, 0xf3, 0x15, 0xbd, 0xe6, 0x4d, 0x6c, 0x3d, 0xac, 0xe7, 0x98, 0xbe,
0x81, 0xec, 0xbd, 0x3e, 0xe2, 0x55, 0x73, 0x3e, 0xc1, 0x77, 0xc7, 0x3e,
0x6e, 0x1b, 0x5e, 0x3d, 0x27, 0x78, 0x02, 0x3f, 0xd4, 0x21, 0x90, 0x3d,
0x52, 0xdc, 0x1f, 0x3e, 0xbf, 0xda, 0x88, 0x3e, 0x80, 0x79, 0xe3, 0xbd,
0x40, 0x6f, 0x10, 0xbe, 0x20, 0x43, 0x2e, 0xbd, 0xf0, 0x76, 0xc5, 0xbd,
0xcc, 0xa0, 0x04, 0xbe, 0xf0, 0x69, 0xd7, 0xbe, 0xb1, 0xfe, 0x64, 0xbe,
0x20, 0x41, 0x84, 0xbe, 0xb2, 0xc3, 0x26, 0xbe, 0xd8, 0xf4, 0x09, 0xbe,
0x64, 0x44, 0xd1, 0x3d, 0xd5, 0xe1, 0xc8, 0xbe, 0x35, 0xbc, 0x3f, 0xbe,
0xc0, 0x94, 0x82, 0x3d, 0xdc, 0x2b, 0xb1, 0xbd, 0x02, 0xdb, 0xbf, 0xbe,
0xa5, 0x7f, 0x8a, 0x3e, 0x21, 0xb4, 0xa2, 0x3e, 0xcd, 0x86, 0x56, 0xbf,
0x9c, 0x3b, 0x76, 0xbc, 0x85, 0x6d, 0x60, 0xbf, 0x86, 0x00, 0x3c, 0xbe,
0xc1, 0x23, 0x7e, 0x3e, 0x96, 0xcd, 0x3f, 0x3e, 0x86, 0x91, 0x2d, 0x3e,
0x55, 0xef, 0x87, 0x3e, 0x7e, 0x97, 0x03, 0xbe, 0x2a, 0xcd, 0x01, 0x3e,
0x32, 0xc9, 0x8e, 0xbe, 0x72, 0x77, 0x3b, 0xbe, 0xe0, 0xa1, 0xbc, 0xbe,
0x8d, 0xb7, 0xa7, 0x3e, 0x1c, 0x05, 0x95, 0xbe, 0xf7, 0x1f, 0xbb, 0x3e,
0xc9, 0x3e, 0xd6, 0x3e, 0x80, 0x42, 0xe9, 0xbd, 0x27, 0x0c, 0xd2, 0xbe,
0x5c, 0x32, 0x34, 0xbe, 0x14, 0xcb, 0xca, 0xbd, 0xdd, 0x3a, 0x67, 0xbe,
0x1c, 0xbb, 0x8d, 0xbe, 0x91, 0xac, 0x5c, 0xbe, 0x52, 0x40, 0x6f, 0xbe,
0xd7, 0x71, 0x94, 0x3e, 0x18, 0x71, 0x09, 0xbe, 0x9b, 0x29, 0xd9, 0xbe,
0x7d, 0x66, 0xd2, 0xbe, 0x98, 0xd6, 0xb2, 0xbe, 0x00, 0xc9, 0x84, 0x3a,
0xbc, 0xda, 0xc2, 0xbd, 0x1d, 0xc2, 0x1b, 0xbf, 0xd4, 0xdd, 0x92, 0x3e,
0x07, 0x87, 0x6c, 0xbe, 0x40, 0xc2, 0x3b, 0xbe, 0xbd, 0xe2, 0x9c, 0x3e,
0x0a, 0xb5, 0xa0, 0xbe, 0xe2, 0xd5, 0x9c, 0xbe, 0x3e, 0xbb, 0x7c, 0x3e,
0x17, 0xb4, 0xcf, 0x3e, 0xd5, 0x8e, 0xc8, 0xbe, 0x7c, 0xf9, 0x5c, 0x3e,
0x80, 0xfc, 0x0d, 0x3d, 0xc5, 0xd5, 0x8b, 0x3e, 0xf5, 0x17, 0xa2, 0x3e,
0xc7, 0x60, 0x89, 0xbe, 0xec, 0x95, 0x87, 0x3d, 0x7a, 0xc2, 0x5d, 0xbf,
0x77, 0x94, 0x98, 0x3e, 0x77, 0x39, 0x07, 0xbc, 0x42, 0x29, 0x00, 0x3e,
0xaf, 0xd0, 0xa9, 0x3e, 0x31, 0x23, 0xc4, 0xbe, 0x95, 0x36, 0x5b, 0xbe,
0xc7, 0xdc, 0x83, 0xbe, 0x1e, 0x6b, 0x47, 0x3e, 0x5b, 0x24, 0x99, 0x3e,
0x99, 0x27, 0x54, 0x3e, 0xc8, 0x20, 0xdd, 0xbd, 0x5a, 0x86, 0x2f, 0x3e,
0x80, 0xf0, 0x69, 0xbe, 0x44, 0xfc, 0x84, 0xbd, 0x82, 0xa0, 0x2a, 0xbe,
0x87, 0xe6, 0x2a, 0x3e, 0xd8, 0x34, 0xae, 0x3d, 0x50, 0xbd, 0xb5, 0x3e,
0xc4, 0x8c, 0x88, 0xbe, 0xe3, 0xbc, 0xa5, 0x3e, 0xa9, 0xda, 0x9e, 0x3e,
0x3e, 0xb8, 0x23, 0xbe, 0x80, 0x90, 0x15, 0x3d, 0x97, 0x3f, 0xc3, 0x3e,
0xca, 0x5c, 0x9d, 0x3e, 0x21, 0xe8, 0xe1, 0x3e, 0xc0, 0x49, 0x01, 0xbc,
0x00, 0x0b, 0x88, 0xbd, 0x3f, 0xf7, 0xca, 0x3c, 0xfb, 0x5a, 0xb1, 0x3e,
0x60, 0xd2, 0x0d, 0x3c, 0xce, 0x23, 0x78, 0xbf, 0x8f, 0x4f, 0xb9, 0xbe,
0x69, 0x6a, 0x34, 0xbf, 0x4b, 0x5e, 0xa9, 0x3e, 0x64, 0x8c, 0xd9, 0x3e,
0x52, 0x77, 0x36, 0x3e, 0xeb, 0xaf, 0xbe, 0x3e, 0x40, 0xbe, 0x36, 0x3c,
0x08, 0x65, 0x3b, 0xbd, 0x55, 0xe0, 0x66, 0xbd, 0xd2, 0xe8, 0x9b, 0xbe,
0x86, 0xe3, 0x09, 0xbe, 0x93, 0x3d, 0xdd, 0x3e, 0x0f, 0x66, 0x18, 0x3f,
0x18, 0x05, 0x33, 0xbd, 0xde, 0x15, 0xd7, 0xbe, 0xaa, 0xcf, 0x49, 0xbe,
0xa2, 0xa5, 0x64, 0x3e, 0xe6, 0x9c, 0x42, 0xbe, 0x54, 0x42, 0xcc, 0x3d,
0xa0, 0xbd, 0x9d, 0xbe, 0xc2, 0x69, 0x48, 0x3e, 0x5b, 0x8b, 0xa2, 0xbe,
0xc0, 0x13, 0x87, 0x3d, 0x36, 0xfd, 0x69, 0x3e, 0x05, 0x86, 0x40, 0xbe,
0x1e, 0x7a, 0xce, 0xbe, 0x46, 0x13, 0xa7, 0xbe, 0x68, 0x52, 0x86, 0xbe,
0x04, 0x9e, 0x86, 0xbd, 0x8c, 0x54, 0xc1, 0x3d, 0xe0, 0x3b, 0xad, 0x3c,
0x42, 0x67, 0x85, 0xbd, 0xea, 0x97, 0x42, 0x3e, 0x6e, 0x13, 0x3b, 0xbf,
0x56, 0x5b, 0x16, 0x3e, 0xaa, 0xab, 0xdf, 0x3e, 0xc8, 0x41, 0x36, 0x3d,
0x24, 0x2d, 0x47, 0xbe, 0x77, 0xa5, 0xae, 0x3e, 0xc0, 0xc2, 0x5b, 0x3c,
0xac, 0xac, 0x4e, 0x3e, 0x99, 0xec, 0x13, 0xbe, 0xf2, 0xab, 0x73, 0x3e,
0xaa, 0xa1, 0x48, 0xbe, 0xe8, 0xd3, 0x01, 0xbe, 0x60, 0xb7, 0xc7, 0xbd,
0x64, 0x72, 0xd3, 0x3d, 0x83, 0xd3, 0x99, 0x3e, 0x0c, 0x76, 0x34, 0xbe,
0x42, 0xda, 0x0d, 0x3e, 0xfb, 0x47, 0x9a, 0x3e, 0x8b, 0xdc, 0x92, 0xbe,
0x56, 0x7f, 0x6b, 0x3e, 0x04, 0xd4, 0x88, 0xbd, 0x11, 0x9e, 0x80, 0x3e,
0x3c, 0x89, 0xff, 0x3d, 0xb3, 0x3e, 0x88, 0x3e, 0xf7, 0xf0, 0x88, 0x3e,
0x28, 0xfb, 0xc9, 0xbe, 0x53, 0x3e, 0xcf, 0x3e, 0xac, 0x75, 0xdc, 0xbe,
0xdd, 0xca, 0xd7, 0x3e, 0x01, 0x58, 0xa7, 0x3e, 0x29, 0xb8, 0x13, 0xbf,
0x76, 0x81, 0x12, 0xbc, 0x28, 0x8b, 0x16, 0xbf, 0x0e, 0xec, 0x0e, 0x3e,
0x40, 0x0a, 0xdb, 0xbd, 0x98, 0xec, 0xbf, 0xbd, 0x32, 0x55, 0x0c, 0xbe,
0xfb, 0xf9, 0xc9, 0x3e, 0x83, 0x4a, 0x6d, 0xbe, 0x76, 0x59, 0xe2, 0xbe,
0x54, 0x7d, 0x9f, 0xbb, 0x9d, 0xe8, 0x95, 0x3e, 0x5c, 0xd3, 0xd0, 0x3d,
0x19, 0x8a, 0xb0, 0x3e, 0xde, 0x6f, 0x2e, 0xbe, 0xd0, 0x16, 0x83, 0x3d,
0x9c, 0x7d, 0x11, 0xbf, 0x2b, 0xcc, 0x25, 0x3c, 0x2a, 0xa5, 0x27, 0xbe,
0x22, 0x14, 0xc7, 0xbe, 0x5e, 0x7a, 0xac, 0x3e, 0x4e, 0x41, 0x94, 0xbe,
0x5a, 0x68, 0x7b, 0x3e, 0x86, 0xfd, 0x4e, 0x3e, 0xa2, 0x56, 0x6a, 0xbe,
0xca, 0xfe, 0x81, 0xbe, 0x43, 0xc3, 0xb1, 0xbd, 0xc5, 0xb8, 0xa7, 0x3e,
0x55, 0x23, 0xcd, 0x3e, 0xaf, 0x2e, 0x76, 0x3e, 0x69, 0xa8, 0x90, 0xbe,
0x0d, 0xba, 0xb9, 0x3e, 0x66, 0xff, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00,
0x40, 0x00, 0x00, 0x00, 0x53, 0xd6, 0xe2, 0x3d, 0x66, 0xb6, 0xcc, 0x3e,
0x03, 0xe7, 0xf6, 0x3e, 0xe0, 0x28, 0x10, 0xbf, 0x00, 0x00, 0x00, 0x00,
0x3e, 0x3d, 0xb0, 0x3e, 0x00, 0x00, 0x00, 0x00, 0x62, 0xf0, 0x77, 0x3e,
0xa6, 0x9d, 0xa4, 0x3e, 0x3a, 0x4b, 0xf3, 0xbe, 0x71, 0x9e, 0xa7, 0x3e,
0x00, 0x00, 0x00, 0x00, 0x34, 0x39, 0xa2, 0x3e, 0x00, 0x00, 0x00, 0x00,
0xcc, 0x9c, 0x4a, 0x3e, 0xab, 0x40, 0xa3, 0x3e, 0xb2, 0xff, 0xff, 0xff,
0x04, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0xb3, 0x71, 0x67, 0x3f,
0x9a, 0x7a, 0x95, 0xbf, 0xe1, 0x48, 0xe8, 0xbe, 0x8a, 0x72, 0x96, 0x3e,
0x00, 0xd2, 0xd3, 0xbb, 0x1a, 0xc5, 0xd7, 0x3f, 0xac, 0x7e, 0xc8, 0xbe,
0x90, 0xa7, 0x95, 0xbe, 0x3b, 0xd7, 0xdc, 0xbe, 0x41, 0xa8, 0x16, 0x3f,
0x50, 0x5b, 0xcb, 0x3f, 0x52, 0xb9, 0xed, 0xbe, 0x2e, 0xa7, 0xc6, 0xbe,
0xaf, 0x0f, 0x14, 0xbf, 0xb3, 0xda, 0x59, 0x3f, 0x02, 0xec, 0xd7, 0xbe,
0x00, 0x00, 0x06, 0x00, 0x08, 0x00, 0x04, 0x00, 0x06, 0x00, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x66, 0x11, 0x1f, 0xbf,
0xb8, 0xfb, 0xff, 0xff, 0x0f, 0x00, 0x00, 0x00, 0x54, 0x4f, 0x43, 0x4f,
0x20, 0x43, 0x6f, 0x6e, 0x76, 0x65, 0x72, 0x74, 0x65, 0x64, 0x2e, 0x00,
0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x14, 0x00,
0x04, 0x00, 0x08, 0x00, 0x0c, 0x00, 0x10, 0x00, 0x0c, 0x00, 0x00, 0x00,
0xf0, 0x00, 0x00, 0x00, 0xe4, 0x00, 0x00, 0x00, 0xd8, 0x00, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x90, 0x00, 0x00, 0x00,
0x48, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0xce, 0xff, 0xff, 0xff,
0x00, 0x00, 0x00, 0x08, 0x18, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0x1c, 0xfc, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00,
0x08, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0x00,
0x14, 0x00, 0x00, 0x00, 0x08, 0x00, 0x0c, 0x00, 0x07, 0x00, 0x10, 0x00,
0x0e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x1c, 0x00, 0x00, 0x00,
0x10, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0xba, 0xff, 0xff, 0xff,
0x00, 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00,
0x03, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00,
0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0x00, 0x16, 0x00, 0x00, 0x00,
0x08, 0x00, 0x0c, 0x00, 0x07, 0x00, 0x10, 0x00, 0x0e, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x08, 0x24, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00,
0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x08, 0x00, 0x07, 0x00,
0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x02, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x0a, 0x00, 0x00, 0x00, 0x10, 0x03, 0x00, 0x00, 0xa4, 0x02, 0x00, 0x00,
0x40, 0x02, 0x00, 0x00, 0xf4, 0x01, 0x00, 0x00, 0xac, 0x01, 0x00, 0x00,
0x48, 0x01, 0x00, 0x00, 0xfc, 0x00, 0x00, 0x00, 0xb4, 0x00, 0x00, 0x00,
0x50, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x26, 0xfd, 0xff, 0xff,
0x3c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0x18, 0xfd, 0xff, 0xff, 0x20, 0x00, 0x00, 0x00,
0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x74, 0x69, 0x61, 0x6c, 0x5f, 0x31,
0x2f, 0x64, 0x65, 0x6e, 0x73, 0x65, 0x5f, 0x34, 0x2f, 0x4d, 0x61, 0x74,
0x4d, 0x75, 0x6c, 0x5f, 0x62, 0x69, 0x61, 0x73, 0x00, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x6e, 0xfd, 0xff, 0xff,
0x50, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0x60, 0xfd, 0xff, 0xff, 0x34, 0x00, 0x00, 0x00,
0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x74, 0x69, 0x61, 0x6c, 0x5f, 0x31,
0x2f, 0x64, 0x65, 0x6e, 0x73, 0x65, 0x5f, 0x34, 0x2f, 0x4d, 0x61, 0x74,
0x4d, 0x75, 0x6c, 0x2f, 0x52, 0x65, 0x61, 0x64, 0x56, 0x61, 0x72, 0x69,
0x61, 0x62, 0x6c, 0x65, 0x4f, 0x70, 0x2f, 0x74, 0x72, 0x61, 0x6e, 0x73,
0x70, 0x6f, 0x73, 0x65, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0xce, 0xfd, 0xff, 0xff,
0x34, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0xc0, 0xfd, 0xff, 0xff, 0x19, 0x00, 0x00, 0x00,
0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x74, 0x69, 0x61, 0x6c, 0x5f, 0x31,
0x2f, 0x64, 0x65, 0x6e, 0x73, 0x65, 0x5f, 0x33, 0x2f, 0x52, 0x65, 0x6c,
0x75, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x10, 0x00, 0x00, 0x00, 0x12, 0xfe, 0xff, 0xff, 0x3c, 0x00, 0x00, 0x00,
0x03, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
0x04, 0xfe, 0xff, 0xff, 0x20, 0x00, 0x00, 0x00, 0x73, 0x65, 0x71, 0x75,
0x65, 0x6e, 0x74, 0x69, 0x61, 0x6c, 0x5f, 0x31, 0x2f, 0x64, 0x65, 0x6e,
0x73, 0x65, 0x5f, 0x33, 0x2f, 0x4d, 0x61, 0x74, 0x4d, 0x75, 0x6c, 0x5f,
0x62, 0x69, 0x61, 0x73, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x10, 0x00, 0x00, 0x00, 0x5a, 0xfe, 0xff, 0xff, 0x50, 0x00, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
0x4c, 0xfe, 0xff, 0xff, 0x34, 0x00, 0x00, 0x00, 0x73, 0x65, 0x71, 0x75,
0x65, 0x6e, 0x74, 0x69, 0x61, 0x6c, 0x5f, 0x31, 0x2f, 0x64, 0x65, 0x6e,
0x73, 0x65, 0x5f, 0x33, 0x2f, 0x4d, 0x61, 0x74, 0x4d, 0x75, 0x6c, 0x2f,
0x52, 0x65, 0x61, 0x64, 0x56, 0x61, 0x72, 0x69, 0x61, 0x62, 0x6c, 0x65,
0x4f, 0x70, 0x2f, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x70, 0x6f, 0x73, 0x65,
0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00,
0x10, 0x00, 0x00, 0x00, 0xba, 0xfe, 0xff, 0xff, 0x34, 0x00, 0x00, 0x00,
0x0a, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
0xac, 0xfe, 0xff, 0xff, 0x19, 0x00, 0x00, 0x00, 0x73, 0x65, 0x71, 0x75,
0x65, 0x6e, 0x74, 0x69, 0x61, 0x6c, 0x5f, 0x31, 0x2f, 0x64, 0x65, 0x6e,
0x73, 0x65, 0x5f, 0x32, 0x2f, 0x52, 0x65, 0x6c, 0x75, 0x00, 0x00, 0x00,
0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00,
0xfe, 0xfe, 0xff, 0xff, 0x3c, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00,
0x0c, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0xf0, 0xfe, 0xff, 0xff,
0x20, 0x00, 0x00, 0x00, 0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x74, 0x69,
0x61, 0x6c, 0x5f, 0x31, 0x2f, 0x64, 0x65, 0x6e, 0x73, 0x65, 0x5f, 0x32,
0x2f, 0x4d, 0x61, 0x74, 0x4d, 0x75, 0x6c, 0x5f, 0x62, 0x69, 0x61, 0x73,
0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00,
0x46, 0xff, 0xff, 0xff, 0x50, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00,
0x0c, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x38, 0xff, 0xff, 0xff,
0x34, 0x00, 0x00, 0x00, 0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x74, 0x69,
0x61, 0x6c, 0x5f, 0x31, 0x2f, 0x64, 0x65, 0x6e, 0x73, 0x65, 0x5f, 0x32,
0x2f, 0x4d, 0x61, 0x74, 0x4d, 0x75, 0x6c, 0x2f, 0x52, 0x65, 0x61, 0x64,
0x56, 0x61, 0x72, 0x69, 0x61, 0x62, 0x6c, 0x65, 0x4f, 0x70, 0x2f, 0x74,
0x72, 0x61, 0x6e, 0x73, 0x70, 0x6f, 0x73, 0x65, 0x00, 0x00, 0x00, 0x00,
0x02, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0xa6, 0xff, 0xff, 0xff, 0x48, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00,
0x2c, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00, 0x08, 0x00, 0x0c, 0x00,
0x04, 0x00, 0x08, 0x00, 0x08, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7f, 0x43,
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0d, 0x00, 0x00, 0x00,
0x64, 0x65, 0x6e, 0x73, 0x65, 0x5f, 0x32, 0x5f, 0x69, 0x6e, 0x70, 0x75,
0x74, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0x00, 0x14, 0x00, 0x04, 0x00,
0x00, 0x00, 0x08, 0x00, 0x0c, 0x00, 0x10, 0x00, 0x0e, 0x00, 0x00, 0x00,
0x28, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00,
0x08, 0x00, 0x00, 0x00, 0x04, 0x00, 0x04, 0x00, 0x04, 0x00, 0x00, 0x00,
0x08, 0x00, 0x00, 0x00, 0x49, 0x64, 0x65, 0x6e, 0x74, 0x69, 0x74, 0x79,
0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00,
0x00, 0x00, 0x0a, 0x00, 0x0c, 0x00, 0x07, 0x00, 0x00, 0x00, 0x08, 0x00,
0x0a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09, 0x03, 0x00, 0x00, 0x00]);
var tf = require("tensorflow").create(2048, sine_model_data);
function t(x) {
tf.getInput()[0] = x;
tf.invoke();
var o = tf.getOutput()[0];
var r = Math.abs(o - Math.sin(x))<0.1;
print("Math.sin(",x,") => ",o," vs ",Math.sin(x), r?"ok":"fail");
return r;
}
result = t(0) && t(1) && t(2);